
TASK: UR40)
CDRL: 01210

UR40 - Repository Integration
B11LtuE COPY AdaTAU Software

User's Manual
Informal Technical Data

UNISYS

'mm

Mae

STARS-RC-01 210/003/00
26 October 1990 D I

ELECT E

90 11. 13 113

REPORT DOCUMENTATION PAGE Form Approved
01- MB No 0704-0188

Jurtic feDC- n; nuo~'et for. of mlc-o o r"&t~or q titsalte To .~aveag ' -ut ov' *d)oswrs. -nri~uai-c the t!"t fot mstnftumtons. sCetrtc-) e--t- cats soU'c"
g&r-jn ma-hsnting the caau "eireoe ane con'o ci " anc ft-.* c~ 1ea tc oIleflOt Mt el'vtation '.eno cairment qartvttt .. reneimatO a Tr'. atoettc~t Of In,*

cor~~tn .~'-. 'c- ne 'uo.' swq ntoh for reco~ng titt !uroen to VVAi~h qon htesou~tiaers Sq'.cq. Oftetoreie 0 .,,lo'n~.alOn Ooervt,c'ns @no Re~Octs 12 15 jeflterst
:)a,, a*~ Sate I-C4 A II 91n V J2232 -A302 a ti to I-. (1H cef 04mansore m~ a no Buge. Page' A ',e ORedu:: on Qt0IeC1 (070A.0182). VVthingTon- L)(-ý03

1. AGENCY USE ONLY (LeJVP bljnký) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED

, 6Otbr1 Final
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Reusability Library Framework (RLF) Librarian
User's Manual STARS Contract

6. AUTHOR(S)92-8--03

James J. Solderitsch
Rayr McDowell

7. PERFORMING ORGANIZATION NAME(S) AND ADDRES"'ES) 8 PERFORMING ORGANIZATION
REPORT NUMBER

Unisys Corporation GR-76'70-11 169 (NP)
12010 Sunrise Valley Drive
Reston, VA 22091

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

Depar-tment of the Air Force
Headquarters, Electronic Systems Division (AFSC) 020Vlm r
Hanscomn AFB, MA 01731-S00011 VOmeI

11. SUPPLEMENTARY NOTES
There are two other retared Keus5abiliLy Library T-roxnwork (RLF) reports:

(RLF) AdaTau User's Manual- and (RLF) AdaKNET User's Manual

12a. DISTRIBUTION, AVAILABILITY STATEMENT]12b. DISTRIBUTION CODE

Approved for public release;
distribution is unlimited

1 3. ABSRACT (Maximum200words)

WJhile librarians are not the only Sorts of applications that have
b-en built With thie RLF, they are the applications that mo-i~ivated the
.initial. development of the RLF. This manual descri.bt-z: a demonstration
librarian built for the domain of Ada benchmark programs. This
applicati~on is typical of many RLF applications in that it uses
ahybrid knowledge reprosentatnn system incorporating an integrated
form of AdaTAU and AdaKNET. The manual provides a librarian system
overview and provides an ann'~tateýd sample usage session. The manual
also presents the hybrid knowleckue base description language
used to connect AdaRNET and AdaTAU.

14. SUBJECT TERMS 15. NUMBER OF PA".aES
Librarian Svs tern Overview 72
Librar~ian 5ystU-rn Compcnents 16. PRICE CODE
Uing the Librarian

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION %~9. SECURITY CLASSIFICATION 20. LIMITATIOIN OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Un~classified Unclassif...ed Unclassified -sAR _

TASK: UR40
CDRL: 01210

26 October 1990

INFORMAL TECHNiCAL REPORT

For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Reusabdity Library Framework (RLF)
AdaTA U 3oftwarc

User's M!anual

STARS- RC-01210/003/00
Publication No. GR-7670-1171(NP)

26 October 1990

Dats. ,A A ^A . TJC r r.... `T chn.ical Data

CONTRACT NO. F 19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000

Prepared by:

Unisys Defense Systems
Taclical Systems Division
12010 Sunrise Valley Drive

Reston, VA 22091

/f)Distjb utio irniited to
U S. G ~ernnpent and. U.S. cove n iient

U1di struktve (2GC'Octob6-1JL9 9,

TASK: UR40
CDRL: 01210

26 October 1990

INFORMAL TECHNICAL REPORT

For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Reusability Library Framework (RLF)
AdaTA U Software

User's Alanual

STARS-RC- 01210,/003/00
Publication No. GR-7670-1171(NP)

26 October 1990

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF

Hanscom AF1, MA 0173.-5000

Prepared by:

Unisys Defense Systems
Tactical Systems Division

12010 Sunrise Valley Drive
Reston, VA 22091

0

PREFACE

This document was prepared by Unisys Defense Systems, Valley Forge Operatio:,, in support
of the Unisys STARS Prime contract under the Repository Integration task (U040). This
CDRL, 01210, Volume I1, is type A005 (Informal Technical Data) and is entitled 'AdaTAU
Software User's Manual".

This document has been reviewed and approved by the following Unisys personnel:

UR40 Task Manager: Richard E. Creps

Reviewed by: i6(•~ //r

Teri F. Payton, Systerri Architect

Approved by: / .-& , 4J 1 n=ý-
AU-X3 WV . * oh er.L* ,* r% Jbg rmS MV* J~ b.ag e%1T

Accosslcn For
TIS GI-:A&I • "

PI'TIC T:?B

,ju)., I 1fct.c~-o ________1 T I S/ $ AvT113iit Code

DN 147 r. tIn

0V!!bjt

"1 l,= • -r 2 , 2 r • I , r 1 a ql '• • "• • , r ' 1 . i i ' ;i t = . i • : a-d /-.o r

Table of Contents

1. Scope ... I
1.1. Identification .. 1
1.2. Purpose ... 1
1.3. Introduction .. 2
2. Referenced Docum ents .. 3
3. AdaTAU System Overview 4
3.1. Basic Architectural Features .. 4
3.2. Fundam ental Architectural Elem ents 8
4. AdaTAU System Com ponents 22
4. 1. Facts ... 25
4.2. Faci Lists .. 27
4.3. Fact Value Lists ... 28
4.4. Fact Schem as ... 29
4.5. Fact Base Schem as ... 31
4.6. Fact Bases .. 33
4.7. Fact Param eters 35
4.8. Fact Parameter Lists .. 37
4.9. IRules ... 38
4.10. FRules .. 40
4.11. QR ules .. 43
4.12. Questions 45
4.13. Response Schcm as ... 47
4.14. Rule Bases ... 50
4.15. Agendas .. 52
4.16, Basic AdaTAU Configuration .. 54

4.17. Generic Advanced AdaTA U Configuration .. 56
4.18. RLF Instance of Advanced AdaTAU Configuration ... 59
4.19. Component Persistance M anagement .. 60
4.20. Basic AdaTAU Persistance M anagement ... 62
4.21. Distributed AdaTAU Persistance M anagement ... 63
4.22. Reverse RBDL Translator ... 64
,4.23. AdaTAU Inference Cycle Com ponents ... 65
4.24. Distributed AdaTAU Inference Cycle Components ... 66
4.25. AdaTAU Basic Inference ... 67
4.26. Distributed AdaTAU Inference ... 68
5. AdaTAU Specification Language - RBDL .. 69
6. Using AdaTAU ... 72

6.1. Creating AdaTUAU Knowledge Bases ... 73
6.2. Building an AdaTAU Application 74
6.3. Sample Session .. 75

7. Notes ... 81

7.1. Facts 81

7.2. Rules .. 81

7.3. Infference ... 82

7.4. GLOSSA. Y .. 84

Appendices

A . RBDL Syntax and Summ ary ... A-I

A .1. Extended BNF (EBNF) M eta-Sym bols .. I

A .2. RBDL EBNF and Sem antics .. 1

A.2.1. AdaTAU Specification 1

A.2.2. Local Inferencer Definition .. 2

A .2.3. Fact Base Schem a Definition ... 3

A.2.4. Factbase Definition .. 4

A .2.5. Irulebase Definition .. . 4

A .2.6. Questionbase Definition .. . 5

A.2.7. Qrulebasc Definition .. 6
A .2.8. Frulebase Definition ... 6

A.2.9. inferencer Definition .. 7

A.2.10. Fact .. 7

A.2.11. Lexical Elements .. 8

A.3. RBDL EBNF Syntax Sum m ary .. 8
B. RBDL Extended Example ... B-1

References

Table of Figures

Figure 1. AdaTAU Layered Abstractions .. 7
Figure 2. Basic AdaTAU Infcrence 15
Figure 3. Distributed AdaTAU Inference ... 17
Figure 4. Basic AdaTAU Component Taxonomy ... 23
Figure 5. Creating an AdaTAU Application ... 72

AdaTAU User's Manual 1

11. Scope

"This document assumes that the user has a basic understanding of the Ada language
and wishes to learn how to incorporate knowledge-based capabilities into a larger sys-
tem. This document is not tutorial in nature with regard to the Ada language, nor does it
cov.r basic material from the field of Artificial Intelligence (AI). In fact, some of the
fgtdamental features of the system described in this manual are based on ideas described
"in the Al literature. The interested reader is referred to one of the many texts on Ada or
AI; in particular, the Ada Language Reference Manual [LRM83] and The Handbook of
Artificial Intelligence, Volume [Barr81].

1.1. Identification

This Software User's Manual provides a description of the content and basic operat-
ing procedures of AdaTAU, a subsystem level component of the Reusability Library
Framework (RLF). Other major components of the RLF include AdaKNET, and the
Librarian application, which are covered in separate user's manuals. AdaTAU provides
knowledge representation and inferencing capabilities via rule and fact base abstractions,
and an associated control strategy that supports the extension of fact bases following the
application of rules drawn from the rule bases. AdaTAU is made up of various packages
providing Abstract Data Types (ADTs) that form the basis for the collection of services
and objects provided within AdaTAU. This rnanual describes the individual package
level components, as well as the major operations and objects defined within each com-

*o
onent.

1.2. Purpose

Mx. The purpose of AdaTAU is to provide a rule-based knowledg• representation capa-
bility within the RLF and to serve as a stand-alone subsystem that can be incorporated
into larger Ada systems which require a rule-based component. /Rule bases provide a
declarative form of knowledge (or heuristics) that human "experts" use to make decisions
within a current knowledge context. Such rules can be used to manage volatile informa-
tion and make decisions consequent to this information which is garnered during the pro-
cessing of other external data structures or through general interaction with a user. One
example of such an external data structure is a semantic network such as the ones pro-
vided by the AdaKNET subsystem of the RLF. This static information is supplemented
by information recorded as simple facts that are collected into fact bases. The current
version of AdaTAU stores facts as simple attribute-value pairs.

Facts are used as input values to collections of rules organized into rule bases by
AdaTAU. Rules whose input facts are all noted to occur within the current fact base will
be "fired" with the result that new resultant facts can be added to the fact base and old
facts can be removed. AdaTAU both maintains a collection of facts, and manages a col-
lection of rules, through which information can be passed to an application which is pro-
cessing its own data. AdaTAU can also direct a sequence of interactions with the user
by posing questions to the user and receiving answers which cause changes to an Ada-
TAU fact base. In addition, this version of AdaTAU supports the partitioning of rule
bases into focused "inference contexts" and includes rules that direct inference focus to
the proper context.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 2

1.3. Introduction

The remainder of this document is organized as follows. Section 2 lists a few par-
ticular refei-ence works that have particular relevance to this document. Section 3 con-
tains an overview of the AdaTAU system including separate views of the basic architec-
tural features of AdaTAU and the fundamental elements of AdaTAU that contribute to
these features. The former view presents a coarser-grained look at the AdaTAU system
useful for Ada programmers who have some familiarity with rule-based systems and
therefore can read the underlying Ada package specifications directly. The latter view
provides more detail and explanation for those who are less experienced with Ada and
knowledge-based programming. In section 4, a complete treatment of the AdaTAU
package level components is given. Within each subsection detailing an individual pack-
age, the collection of basic objects, types and operations that make up the package are all
covered separately. Section 5 presents a description of the knowledge base declaration
language used to describe schemas for individual fact and rule bases and state facts that
initialize particular fact bases. A hands-on view of AdaTAU, covering the steps neces-
sary to integrate AdaTAU with other subsystems, is presented in section 6 including the
use of AdaTAU's static description language to tailor AdaTAU to a particular application
domain. Finally, section 7 provides some general background information about the con-
cepts; and terms used in this document. Section 7 also includes a glossary of important
terms, acronyms and abbreviations.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Mauual 3

2. Referenced Documents

In addition to the Ada LRM, and the AI Handbook referenced earlier, the following
documents are useful as references in conjunction with this document. Documents
marked with an asterisk (*) were delivered to the Naval Research Laboratory as part of
the original STARS Foundation contract (number N00014-88-C-2052) that supported the
initial development of the RLF.

(*) Reusability Library Framework AdaKNET/AdaTAU Design Report.

(*) Gadfly User's Manual.

AdaKNET User's Manual.

Librarian User's Manual.

The RLF Librarian: A Reusability Librarian Based on Cooperating Knowledge-
Based Systems [McDowel189].

The Growing of an Orgarion: A Hybrid Knowledge-Based Technology and Metho-
dology for Software Reuse [Simos88].
Construction of Knowledge-Based Components and Applications in Ada
[Wallnau88).

Constructing Domain-Specific Ada Reuse Libraries [Sclde_-.tL ho)].

L0S0Reusability U~brary Framework AdaTAU 05 June 1990

AdaTAU User"s Manuai 4

3. AdaTAU System Overview

AdaTAU is based on TAU, a Unisys-proprietary production rule-based system that
incorporates an agenda mechaidsm for directing interaction with a user along with a
forwerd-chaining inference system. Another agenda mechanism is used to manage infer-
ence over a distributed collection of "inference bases" where the inference process spans
the collection. Ru!e base systems provide a &cductive capability to generate new infor-
mation based on information already present in the system. Information is stored in the
form of facts that are represented in AdaTAU as attribute, value pairs. Rule bases are
simply collections of rules, each of which includes a list of facts that must be true to
apply the rule, a list of facts to be concluded and/or a list of facts to be retracted when the
rule is applied. Note that one or the other (but not both) of these lists could be empty.

Rule base systems have traditionally been written in Lisp and Prolog. However,
AdaTAU demontrrates that Ada with its strong notions of data t•yping, data abstraction,
and exception handlitg is a viable and efficient language system mat supports this form
of knowledge representation and processing. Ada will allow this component to be natur-
ally integrazed into larger knowledge processing systems that have need of a ruie base
cornpolent. The underlyi ig pieces of AdaTAU are facts (collected into fact bases), and
rules (collected into rule bases). Rules depend on facts (rule antecedentn) tnd ace used to
derive new facts or remove old facts (rule consequents). Through Ada language feztu-es,
we are able to separate fact bases from the rule bases that modify them. In addition,
AdaTAU providts for schema definitions for both facts and rules that natu;al&v extend
the native type checking of Ada.

3.1. Basic Architectural Features

TAU is an acronym made up of the first letters of the phrase that summarizes the
crganization of this component - Think, Ask, Update. Think refers to the analysis of the
fact base whi;h is used to record information about the domain under consideration, and
to the application of x ules which directly modify this fact base (add or delete facts for
example). Rules considered during this phase may also lead to the scheduling of queries
Wil.lcii Will Lfl.. PrOi1 SA d s~J ubusc4ucnlA . FL)I'. USIJ~va Ut'. VF o ' .Aj M~a% 'J J0AJ.lEl, jU4JL),0-" ,

and recording responses in answer to the questions, that are scheduled as a result of the
Think phase. Finally, the Update phase will modify the fact baqe in a manner that
depends on the responses recorded in the Ask phase. The part of AdaTAU executing this
basic inference cycle is called the investigator.

Distributed AdaTAU (DTAU) is an extension of basic AdaTAU (identified as cen-
tralized TAU (or just TAU) in comparison to DTAU) that provides for the localization of
individual rule and fact bases ir to separate inference contexts which communicate with
each other through fact paranmeters. The basic TAU investigator cycle is augmented with
an additional phase that prtcesses rules which help identify possible inference focus
switches to more useful contexts. The importing application makes use of a focus
evaluation and TAU invocation cycle to perform iniference over the available inference
contexts.

Some basic architectural featues of AdaTAU are summarized in the following
labeled paragraphs. The next section of this manual provides additional background on

Reusability Library Framework AdaTAU 08 Jure 1990

AdaTAU User's Manual $

these features.

Fact Base Schemias. AdaTAU provides an attribute-value structure for facts. Facts are
thus simply viewed as pairs of properties and values of such properties. However, Ada-
TAU manages the relationship between particular properties and the permitted value sets
that contain values used in particular facts pertaining to the property. AdaTAU defines a
set of fact base schemas for each application. These schemas restrict the form and value
sets for facts within a particular fact base.

Rule Bases. Rather than providing a single kind of rle base, three kinds of rules, each
contained in a corresponding rule base, and each supporting a different kind of forward-
chained inference processing relative to a common fact base, have been provided. Other
kinds of rules and rule bases may bx-- added in future versions of AdaTAU. For example,
action rules could be defined so application operations (actions) could be invoked with
modification of the fact base depending on the results of the operation. Such a mechan-
ism would enable the application to control and interact with the TAU process.

An IRule (Inference Rule) is a rule which directly affects the fact base, and requires
no input from the user. IRules are the direct realization of if - then kinds of rules.

A QRule (Question-asking Rule) is a rule which involves the eventual processing of
user input. Depending on a response to a particular question associated with the rule,
other facts can be added to, or deleted from, the fact base. However, before the question

S.V.... ...A J% o .4J ,*,J ,,i%. *h .k~., C& =% .,-*t a.., **..-te • te ~ llt 'nt'•'=e n n# a ~
base. AdaTAU separates the scheduling of the question and the asking of the question
and provides for the ranking of the question numerically when it is inserted on the
agenda of questions to be asked. In this way the user is presented with the most impor-
tant question first.

An FRule (Focus-suggestion Rule) is a rule that identifies an inference context (typ.-
ically by an application- specific name) where it is likely that the goal of the current infer-
ence process will be served (i.e., additional facts ca-i be deduced). An FRule does not
itself derive any new facts, directly or indirectly. When an FRule's antecedent facts are
present in the fact base, the FRule will cause the focus agenda to be modified. Depend-
ing oih che weight attached to a focus suggestion, an FRule may lead to the suspension of
inference within the current context, or it may direct attention to an alternate coi.text
when rio further inference progress is possible in the current context.

FRules are required only for DTAU. However, through Ada we are able to define a
single rule base data type, and separate rule data types corresponding to each of the kinds
of rules listed above. Rule bases are d-efined using the generic construct of Ada, and the
individual rule bases are defined via instantiations of this generic with each individual
rule type.
Agenda&. An agenda is simply a prioritized queue of .tems where retrievals from the
agenda are based on an agenda item's priority or weight. In AdaTAU, interactions with
the user which are scheduled as a result of the firing of QRules are placed within a
separate agenda that is consulte6 as AdaTAU executes. Each individual inference con-
text is equipped with its own local agenda. In DTAU, focus switch suggestions result
from the firing of FRulets, and these ave merged with the current contents of the global
focus agenda. QRules post a question item to a local question agenda which the investi-
gator portion of AdaTAU uses to interact with the user in an organized manner. The

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User'b Manual 6

question agenda, and questions retrieved from it, is processed during the Ask and Update
phases of TAU. DTAU includes a separate Think-Again phase during which IRules and
FRules are processed in advance of considering a focus switch.

Questions themselves refer to additional schema definitions called response sche-
mas which package the actuai text of the question to be asked of the user along with the
permitted response type that AdaTAU will expect in answer to the question, and the
corresponding fact base modifications attached to each response. AdaTAU checks to see
that included facts conform to the fact base schemas estabiished for each attribute-vw.lue
pair. Analogously to the case for rules, the concept of agenda is implemented as an Ada
generic package which is instantiated with an object type representing a particular
agenda possibility, questions. Later versions of AdaTAU will make use of other
instances of the agenda generic.

AdaTAU Layering. In designing and implementing AdaTAU, a layered abstraction
approach has been taken which results in an onion-skin like view (figure 1) of the struc-
ture of AdaTAU. Two onion-skin views are provided for centalized and distributed Ada-
TAU. By layering the basic services and objects that are required in support of AdaTAU,
we reduce visibility of the underlying support operations that are used internally by Ada-
TAU, and promote and encapsulate the basic higher level operations required to use Ada-
TAU effectively. The core of the onion represents the kernel operations upon which
AdaTAU is based. This kernel includes the basic definitions for facts, tact bases, fact
base luhea.bas, rules (lOf Ihe Va1iUL i-Ly-yFb), rule .ases anLd t, agEnd . Oas. ach 1ai QObJJC.,t and
operations on that object are captured in a single Ada package that implements the
objects as a well-defined abstract data type.

The next layer in the onion-skin picture provides the programmatic interface to the
core features of AdaTAU and is realized as a single package called basicconfiguration.
This layer also provides some basic composite operations that relate two or more objects
which are defined in different Ada packages. All of the essential capabilities of AdaTAU
that an application is likely to require are made available through this interface. The
application need not be concerned with any underlying definitions or implementationi
details.

The outer layer of the onion denotes a package that contains the basic operations
required to implement a TAU-style inference capability from the base components con-
structed in the inner layers. An application built using this outer interface is guaranteed
to make proper use of AdaTAU operations, and to be completely independent of any
implementation decisions regarding the basic operations, or any composites that directly
detpend on these operations. In particular, any decisions made about the storage tnetho-
dology for collections of basic objects (such as fact and rule bases) are irrelevant as long
as an application utilizes AdaTAU through this outer interface. However, an application
can choose to e'se the services of AdaTAU directly as provided in the basicconfiguration
package. An alternative inference strategy to the TAU model can be defined from these
middle level operations. At the lowest level, an application designer can decide to use
the basic operations directly, perhaps providing a family of new composite operations in
the process.

In the case of distributed AdaTAU, an additional layer is introduced between the
application layer and the basic TAU configuration. This layer provides the FRule

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 7

TAU Ap palcaiom Layer

TAU CouJifguratlon

Ad&TAU

Fundamental

Compofile TAU
Operasicuts

TAU-styie Iteec

CDitraibued

Figure1. AdTAU Aplton LayereAbtacis

mechanism nd basic spport forditiueopriosadppctonnertonTh
&j~dtionl laer mkes se o TAU bas ficrgurammticitraebti oicroae

into the basic interface because the extra deitonadoprinsaeoteqrdfr

Reusabiliy LibraryFrameworkaldaTU0 ue19

AdaTAU User's Manual

the single inference base version. The application is free to provide the means by which
individual TAU contexts are distributed. This layer is implemented in terms of an Ada
generic package that accepts a basic Ada type and procedure as generic parameters. The
procedure, supplied by the application designer, must produce an inference context based
on particular type values for the type that instantiates the generic type parameter.

3.2. Fundamental Architectural Elements

Information that is managed by AdaTAU comes in two principal forms, Facts are
units of data that represent features and properties of a domain. AdaTAU relies entirely
on facts to capture the what of this domain. Rules, on the other hand, provide a mechan-
ism through which facts can be either added to the collection (the fact base) being
managed by AdaTAU, or deleted from this collection. Rules are thus agents of change in
regard to the fact base. In the next subsections, the basic properties of facts, rules and
related structures pertaining to their realization in Ada are discussed. Some additional
background information about facts and rules can be found in section 7.

Facts

Facts are implemented as <attribute, value> pairs (a-v pairs). A simple example is
<operation-status, prototype>. An attribute can be understood to be simply the name of
a property of the domain under consideration. A value for an attribute provides a charac-
terization of that propert.. Both attributes and values are implemented simply as strings,
although AdaTAU provides a significant management component so that instances of
these objects can be restricted and checked for conformance to declared rules for a-v
pairs. Functions are provided to convert attributes and values to strings and vice versa.
This allows the application using the facts package to print and manipulate attributes and
values as strings and to create facts from strings. Two other routines, Get_Artr and
GetValue are provided to extract the attribute and value, respectively, from a fact.

Fact Lists

Simple collections of facts as manipulable structures are required in several places

fore provide a simple fact list structure by instantiating a generic list data structure,
Tau-List, with fte type fact. All the routines from the Tau-Lists package can be applied
to fact lists. In addition, the routine SearchValue is provided which returns the value
associated with an attribute of a fact in a fact list.

Fact Bases

Fact bases, viewed in their simplest form, are sets of a-v pairs. For a given domain,
the list of possible attribute values is a finite set. For each attribute, AdaTAU permits
either a single a-v pair, several distinct a-v pairs (with values restricted to a finite list), or
an unspecified number of a-v pairs (with arbitrary values) to exist simultaneously in the
fact base. These restrictions are encapsulated in a fact base schema, described below,
which is part of the fact base data structure.

i / Fact bases can be created using Create, then filled with facts using the Install rou-
tine. Facts can also be deleted from the fact base using Delete- Other operations that

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 9

result in the creation of new fact bases are the set operations Union, Intersection, and
Difference.

Several routines are provided to examine fact bases. A fact base's schema is
retuned using GetSchema. There are two versions of SearchFact. One returns a fact
corresponding to a given attribute while the other returns a boolean value indicating
whether or not a given fact is in the fact base. Similarly, SearchFacts returns a list of
facts with a given attribute. Furthermore, the function DuwnpBase allows a fact base to
be converted into a fact list, which can be examined more easily. A fact base can also be
tested for emptiness with the function Empty. The function Subset compares two fact
bases to determine if one is a subset of the other. The function Valid can be used to test
whether or not a fact is consistent with a fact base and the facts it already contains.
Finally, the two functions Compatible and Consistent compare two fact bases to deter-
mine if they have equivalent fact base schemas and if their facts are consistent with each
otaer. These functions can be used to determine if the two fact bases can be combined
using set operations.

Fact and Fact Base Schemas

Fact schemas and fact base schemas provide a means of configuring the possible
restrictions for a-v pairs that pertain to the various attributes. In particular, a fact schema
restricts the values that can be paired with a given attribute. A simple representation of a
fact schema is given by:
structuretype : oneof (stack, queue, string, deques,

rings, maps, sets, bags,
lists, trees, graphs, other);

In this example, structuretype is an attribute that can have exactly one of the values
listed; thus, there can be at most one fact with this attribute within a fact base at any
given time. In general, each distinct attribute has an associated fact type which is res-
tricted to be either one_of, some of, any or reference. A fact type of oneof or some of
specifies whether facts based on the attribute can take on only one, or several, values
chosen from a finite list of possibi ,alues. In the latter case, a fact attribute may appear
£AVJ1"t.s SAl AAt %, U &i ut b s AL.' U44%. W5UI 4 U ..eAt .,U VB1. 11 AW.4 sJL U'&)' aA&L., 1.4vAH-

facts based on the attribute can take on any arbitrary value. The fact type reference indi-
cates that the fact value is actually a name that is a reference to a value description that is
external to the fact itself. Reference facts are used when a fact value is too large to be
embedded in the a-v pair and the value contents are typically placed within a file stored
on disk. For each distinct attribute, a Fact Schema is maintained to capture this informa-
tion for that attribute, as well as a iist of allowable values (if the attribute is one of or
some of). Routines are provided to create fact schemas and to extract the various com-
ponents of a fact schema (GetAur, Get_Type, and GetValues). As well, a function
Valid is provided which returns true if a given fact is valid with respect to a given fact
schema.

A fact base schema restricts the structure of the collection of facts that can belong to
a fact base. Fact base schemas are implemented as lists of fact schemas, one fo each
attribute allowed in a fact base. Every fact base must have an associated fact base
schemv-. Create_FactBaseSchema creates an empty fact base schen.a which can be

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 10

filled with fact schemas using Add-Schema. A routine, DuwnpSchema, is provided to
convert the fact base schema to a list of fact schemas, which can then be examined using
routines from the generic package TauLists. A fact base schema can be tested for emp-
tiness using Empty. Several versions of the function Valid are provided to check for
inconsistencies between fact base schemas and attributes, facts, fact lists, or fact sche-
mas. Also, the fact schema corresponding to a particular attribute can be obtained using
Get-Schema.

IRules

IRules implement an if- then sort of rule and are the simplest kind of rule to pro-
cess. They essentially encapsulate two different fact lists with the first identified as the
premise list for the rule while the second provides a consequent list. The TAU cycle
includes a step whereby all eligible (primed) IRules are fired. A rule is primed when the
members of the premise list are observed to be present in the current fact base. Firing
results in the facts in the consequent list being added to, or deleted from, the fact base.

To prevent an elementary kind of infinite loop that would occur if the same primed
rule were repeatedly considered for firing, AdaTAU tags an IRule when it has been fired
once. A specific IRule tag field is reserved for this purpose. Mules also have a field
reserved for a textual explanation of the rule's purpose.

In addition, functions are provided to extract the components of an IRule
(Get Justification, Get Antecedent, and GetConsequent). Set_Flag, ClearFlag, and
Check_Flag can be used to manipulate the tag field denoting whether the IRule has fired
or not.

QRuies
QRules are more complicated because they act in a two stage manner to alter a fact

base. Like IRules, a premise fact list is provided that enables a QRule's firing. However,
no direct consequent facts are asserted or denied as a consequence of such a firing.
Rather, when a QRule fires, a question, whose possible answers are associated with dif-
ferent consequent fact lists, is added to another data structure (the agenda - see below).
A raa'f•fnrw' tg 'h, nab5 t-;t-ilar nipoctlgrn ;c inphlApA n the •'Ridp in nlptae nf v- r epniiPnt

fact list.

The actual asking of the question (and resulting processing of facts) is deferred until
a later phase in the TAU process. The question data structure is described below, but it
should be noted that the response to a question is unknown at the time the rule is written.
Thus there can be no one consequent list for a QRule, but rather several. In fact, because
the outcome from a QRule hinges on the answer to a question, the consequent lists are
actually attached to the question and not the QRule.

Like IRules, QRules are tagged to prevent unlimited refirings. Each QRule supplies
a weight factor that contributes to the ranking of the question within the question agenda
structu- e. The weight is used in conjunction with the feature that the same question can
be associated with different QRules, each of which can schedule the question using its
own weight value to rate the importance of the question. A question's position on the
agenda is determined by the sum of the weights assigned to it by all of the QRules
requesting it. QRules are also equipped with a single text field that can be used to report

Reusability Library Framework AdaTAU 08 June 1990

0

AdaTAU User's Manual 11

to the user why a particular question was scheduled by this rule.

Functions are also provided to extract the components of a QRule (GetConditions,
Get-Question, Get_Weight, and GetJustification). SetFlag, ClearFlag, and
Check_Flag, respectively, mark a QRule as fired, mark a QRule as unfired, and deter-
mine whether or not a QRule is marked fh-ed or unfired. Like IRules, a QRule can only
be fired once, so marking a QRule fired prevents it from being considered for firing
again.

FRules

FRules are unlike IRules and QRules in that they do not cause new facts to be added
to a fact base directly or indirectly. Rather, the purpose of an FRule is to promote the
opportunity for inference (the basic process of producing new facts from old) in another
location within a distributed collection of inference bases. Like QRules, FRules are
weighted so that if multiple FRules can fire in a given infererce base, the competing
focus suggestions can be ranked so that the more likely inference base is examnined first.
A focus agenda is used to keep track of multiple inference opportunities. If two or more.
different FRules each point to the same inference base, the sum of the weights of these
rules is used to rank the inference context on the focus agenda when each rule is fired.
Like both IRules and QRules, FRules are tagged to prevent unlimited refirings and
FRules also contain an explanation field.

Operations are provided to extract the components of an FRule (GetConditions,
GetQuestion, GetWeight, GetContext and Get Jusificalion). Set_Flag, ClearFlag,
and Cheek_Flag, respectively, mark an FRule as fired, mark an FRule as unfired, and
determine whether or not an FRule is marked fired or unfired. Routines are also provided
to create FRules from their constituent parts, copy FRules and compare FRules.

Rule Bases

A particular instance of a centralized AdaTAU application is defined by a fact base
schema, an optional initial fact base, and a list of rules (IRules. QRules) that are applica-
ble to the fact base. The collections of rules are called rule bases. AdaTAU is configured
"Arlth tlur €rx.nn-atp. nitlp hnri.C nnp finr Tlinile •nri nnP fnr ORilec TRiih. ha vm and OR{i'•'.

bases are implemented as instantiations of a generic rulebase package, which in turn
instantiates a generic list package.

Distributed AdaTAU applications are defined by collections of inference bases,
each of which includes a fact base schema, a fact base, and lists of rules (IRules, QRules
and FRules) that are applicable to the fact base. In addition, inference bases also can
make use of fact parameters to communicate with each other. FRule bases also are
defined via the generic rule base package.

Questions

Questions are directly associated with QRules but are configured separately to allow
different rules to use the same question configuration. One component of a question is

AM the text of the question itself which is presented to the user. Another is a structure, called
a response schema, which maintains, for each possible user's response, a corresponding
consequent fact list that describes the consequences of the QRule(s) that scheduled the

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 12

asking of the question initially. Response schemas are abstract data types in their own
right and are provided, along with appropriate operations, in a separate package.

The simplest kind of question is one that admits a fimited number of answers that
can be presented in multiple choice terms. For example, a question can be represented as

Question Ask_ComponentType is
Text: {What is the component type?};
Type: one of;
Responses:

"structure" => (componenttype, structure);
"tool" => (componenttype, tool);
"subsystem" => (componenttype, subsystem);

For each choice, a corresponding list is stored and members of the list are added/deleted
to//'zom the fact base if the user picks that choice. In the example above, the listed fact is
added to the fatzt base when the user makes the choice to the left of each fact. Facts to be
deleted are maked by the '' character (see the discussion of RBDL in the appendix). An
extension of this view perm~its the user to agree to several (or all) of the possible answer
choices. In this case, all of the corresponding consequent lists would be processed, with
contradictory facts i-esulting in a raised exception. Routines are provided to create ques-
tions and to extract the various components of a question (Get_7 ext, GetNumChoices,
and GetResponseTable).

Agendas

We have already mentioned that questions are scheduled as a result of the fhung of
Qt~ules, and tnat the actual processing of questions is handled via a weighted agenda
mechanism. Similarly, FRules produce focus switch suggestions which are handled by a
separate focus agenda. The concept of agcada can actually be abstracted as simply a
weighted queue of items where the agenda manager will simply provide the most highly
weighted item when a user wishes to retrieve an item from the agenda. When an item is
added to the agenda, a check is made to see if the item is already on the agenda. If it is,
UIlu WýAr,1L IJL USAL, 14%,IL LO UAL&JUOILU. I AL L A , ILJL, Ufl. ALL.IJLI AO Qk1%UU LJ L&W "E G 1l1UV Q.tVJI1• VVLUA

its initial weight.

In addition, the AdaTAU application requires a link back to the object(s) that posted
the item to the agenda. In the initial AdaTAU design, the items on the agenda are ques-
tions (actually they are pointers to questions), and the objects posting questions to the
agenda are QRules, Thus the question agenda for AdaTAU is an ordered (by weight) list
of questions, each of which refers to a list of the QRules that contributed to the question
having been placed on the agenda. In the current design, focus agenda items are the
identities (usually names) of hiference base locations, and a list of FRule reference con-
texts that identify each of the FRules that caused the agenda item to have been placed on
the agenda as well as the inference base location of the FRule itself. The reference lists
maintained per agenda item can be used to tag the actual facts that eventually are
asserted as a result of using the item retrieved from the agenda as well as permitting truth
maimenance under non-monotonic reasoning. In general, knowing the identity of the
object that caused the agenda item to be posted or modified car. provide information that
is necessary when the item is processed later.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 13

0 The agenda mechanism is provided through a generic package. Agendas are imple-
mented as collections of agenda records, which is another private type exported by the
agendas package. Each agenda record corresponds to a single agenda item, and vice
versa. Agenda records have three components: the agenda item itself, the composite
weight associated with the item, and an "information list" (of type Info.List, another
private type exported by the agendas package). The information list, for question agen-
das, is a list of the QRules that placed the question on the agenda. This list of QRules
also contains the weight that each QRule assigned to the question, but this is not visible
to the user.

Many operations are provided both for agenda records and for info lists. Routines
are provided to extract the three components of an agenda record (Get.Item, GetWeight,
and Get Info). No routines are provided for creating or constructing agenda records
because this is done automatically when an item is put on the agenda. Procedures and
functions are included to iterate dirough an InfoList (Reset-Info, More. Info, and
NextInfo), to search for information (Searchlnfo), and to test for emptiness (Empty).

CreateAgenda is used to create an empty agenda and items are added to the agenda
using AddItem. DeleteWeightiestRecord removes and returns the item with the
highest composite weight from the agenda. The operation DeleteOneRecord deletes a
specified record, not necessarily the first one, from the agenda. The function
DumpAgenda converts an agenda to a list of agenda items so that it can be examined
using routines from Tau_Lists. SearchRecord searches for a particular item and, if
found, returns the corresponding agenda record. Empty is used by the inferencer to deter-
mine when the agenda is empty.

A Basic TAU Application Shell

At the outer-most layer, we can outline TAU as an Ada procedure which is invoked
with an initial fact base, an IRule base, a QRule base, and a question base. 'The contents
of these bases are determined via translation from RBDL specifications of actual fact
base schemas and rule structures for the domain on which TAU is to operate. RBDL is
described in the language subsection of this report. A sample Ada procedure implement-
ing a particular method of rule-based inference is as follows. Note that this procedure is
a stripped version of the actual Ada version of the Tau procedure to allow the discussion
to focus on essential features. For example, parameters that support non-monotonic
inference are not shown in the included procedure calls.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 14

with Basic Configuration;

use BasicConfiguration;

-- Basic Configuration packages the resources required to run a TAU

-- application. These include types for fact bases, both kinds of rule

-- bases and the notions of local question agenda and response management.

procedure Tau (CurrentFb in out FactBase;

IruleRb in IruleBase;

QruleRb in QruleBase;

Questions in QuestionBase;

Local-Agenda : in Question Agenda :-

QAgendas.CreateAgenda) is

User Response Response;

WorkingAgenda QuestionAgenda :- LocalAgenda;

begin

-- forward chain all firable rules; update agenda

Think (Current Fb, IruleRb, QruleRb, LocalAgenda);

while not Q agendas.Empty (WorkingAgenda) loop

-- ask question at top of agenda producing response

Ask (Working Agenda, Questions, UsexResponse);

-- use response to modify the fact base

Update (CurrentFb, UserResponse);

-- Think again

Think (CurrentFb, IruleRb, QruleRb, Working Agenda);

end loop;

end Tau;

Basic inference progress is made within the Think and Update procedures while
user interaction is handled inside of Ask (see figure 2). After an initial execution of the
Think phase, a loop through the successive phases of Ask, Update and Think is executed
until the working agenda becomes empty. At this point no Mules are primed and no
questions derived from QRules remain for the user to answer. We now consider these

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Mauual is

phases individually.

Think. An initial invocation of AdaTAU will process all IRules until no further changes
to the fact base are possible. IRules will be examined in an arbitrary order, in particular,
the rule base designer cannot assume any particular ordering of their being fired. The
same arbitrary ordering is followed in all subsequent passes through the list of IRules.
During the Think phase, several passes through the set of IRules may be necessary since
the addition of facts in the consequent lists of fired IRules may cause other IRules to
become primed. Then a single pass over all of the QRules is made so that all of these
rules found to be primed can have their associated questions placed on a local agenda
that is used to manage an orderly and prioritized interaction with the user. The examina-
tion of QRules will also occur in some fixed sequential mainer. Multiple passes through
this rule set is Pot required since these rules do not directly affect the fact base. Notice
that after the Ask and Update phases are completed, the Think phase is invoked again
because the fact base can be changed during the Update phase.
Ask. The user of a TAU-based application must be consulted when no further progress
can be made within the Think phase. At this point, the agenda is consulted and a user's
response to a question drawn from the agenda is processed. Question-asking and
response-recording is handled by the Ask module. Other agenda items, if any, are not
processed until after the next Update phase and following Think phase are completed. "f

0
Single Investigator

Mules Questions Agenda Cno o

Infofmauon Rlow

Figure 2. Basic AdaTAU Inference

-0
Reusability Library Framework AdaTALU 08 June 1990

AdaTAU User's Manua; 16

the agenda is empty initially, and the Think phase does not add any items to the working
agenda, the current AdaTAU invocation ends with no further processing.

Update. From the recorded response returned by the Ask module, updates to the current
fact base are handled by the procedure Update. Update provides a truth maintenance
phase. If a question was asked, depending on the response, consequences traced to the
corresponding QRule are processed against the fact base. In the simplest case where no
fact deletions occur, the Update phase simply needs to add those consequent facts
attached to the particular response obtained from the user. Otherwise, Update must make
sure that fact deletions are propagated through a fact dependency table that tracks the ori-
gin of facts ia the fact base. In any case, the response schema data structure makes the
required information easy to obtain.

It will be necessary for the top-level application that requires TAU to provide
instances of an initial fact base, accompanying rule bases, and a question base containing
all questions which may be posed to the user. Once the TAU component has finished its
work (the question agenda becomes empty), the outer application must also process the
resulting fact base to extract information to be used subsequently.

An Advanced Application Shell

The advanced TAU organization presented in this section provides capabilities
needed by the Reusability Library Framework. The RLF system includes dual
knowledge representation schemes in the form of a semantic network providing taxo-
nonmic organization for the library domain, and distributed rule base systems that pertain
to discrete components of the network. Thus different rule bases will be housed in dif-
ferent portions of the network. In order te prepare for this integrated system, we have
designed a version of AdaTAU which employs Distributed Rule Bases each of which is
processed independently using the AdaTAU model presented previously. Certain facts
that are produced during a local inference may need to be transferred and applied els-
where. To accomplish this, a fact parameter capability is introduced through which facts
may be exported from an inference base, imported to an inference base, or both.

A separate process called the focuser coordinates the results produced by processing
the individual rule bases (see figure 3). The focuser is guided by an agenda of (the iden-
tities of the) separate inference base components. An item on the focuser's agenda is
able to direct the focuser to the inference base that is most likely to permit further infer-
ence progress. Like the question agenda used within basic AdaTAU, items on the
focuser's agenda are also weighted so that the inference base with the most potential to
affect the fact base is consulted next. Individual rule base processing is able to affect the
focus agenda through the firing of FRu'es which generate focus switch suggestions that
are merged in with the current focus agenda.

Although not indicated in the diagram, the occurrence of a context ,witch includes
the exportation of facts from the current fact base and the importation of facts to the new
fact base. This transfer is accomplished through the fact parameter facility provided in
Distributed AdaTAU. The rule base invocation strategy is designed to permit the appli-
cation to start/suspend/resume separate TAU interactions using the individual rule base
components. A key feature of this strategy is that these local TAU interactions will not
be "greedy"; that is, exhausting all possibilities locally before considering TAU

Reusability Library Framework AdaTAU 08 June 1990

Ad&TAU User's Manual 17

contra now
Modified Investigator InformWon Flow

Fact Base

Chea
with

Focusci

11ink Update Ag

Train

Rtdc
QwsLi(;n
Agenda FRules

ýýRttle

multiple
Infc=m

Focuser Bases 0

0 0 0

Choose can Update

Focus Inves4stor Focus

Agenda

Focus F(xM-S j

Agenda

/\/\./N

Figure 3. Distributed AdaTAU Inference

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 18

components elsewhere in the system. Instead, the system will operate on a "willing
surrender" strategy that permits the controlling application to expect context switches
after a single pass through the Think, Ask, Update sequence. The means to providing
this capability is the focus suggestion agenda.

We assume that any application using the distributed form of AdaTAU (abbreviat?,d
DTAU) will deposit tie identity of an initial iifference base on the focus agenda so that
an initial execution of the TAU sequence can occur relative to this start-up inference
base. The version of DTAU presented here is a skeletal representation that integrates the
processing required for distribtuted rule bases with the local investigation that occurs once
a particular rule base is selected. The actual code for DTAU is considerably more com-
plicated. This version merges the modified investigator shown in Figure 3 with the
focuser into a single module and ignores details pertaining to non-monotonic inferencing.

with Dasic configuration,
advanced configuration instance;

use basic cor.tiy iration,

advanced confi gurationinstance;

-- advancedconfiguration packages the resources required
-- to run a distributed TAU application including focus management.
-- Thsce includc typces for fact bases, all three - 4,- o--f --
-- and the notions of local question agenda,
-- global (re-focus) agenda, and response management.

procedure DTAU (CurrentFb : in out Basic Configuration.TauFactBase;
GlobalAgenda : in out App_FocusAgenda;
CurrentInferenceBase : in out AppInferenceBase) is

user Zesponse : response;
firstchoice, secondchoice

get-inference base (global agenda);
irule RB : irule base;
qrule RB : qrulebase;
fruleRB : frule base;
questions : question-base;
local agenda : question-agenda;
refocus suggestions : focus suggestions :-

NULLFOCUS SUGGESTION;

begin

-- attempt to establish an initial TAU identity

if CurrentInference Base - NULLINFERENCEBASE then

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manua . 19

There must be an initial inference base to get started

return;

else

-- Translate TAU identity fetched from global agenda to a TAU context

AcquireTAUContext (CurrentInferenceBase, iruleRB, qruleRB,
fruleRB, questions, local-agenda);

Think (currentFB, iruleRB, qrvleRB, local-agenda);

loop

-- This is the basic investigator sequence: Think, Ask, Update,
-- Think again

-- forward chain all firable rules; update local agenda;
-- QRulhs are considered in the Think module,

.ules are considered in the Think After module.
,re IRules may have become primed after user is consulted.

if not q_agendas.empty (localagenda) then

-- ask question at top of agenda producing response

Ask (local-agenda, questions, userresponse);

-- use response to modify the fact base

Update (currentFB, user-response);

end if;

Now process all newly fireable irules and fire
-- any primed frules. Any fired frules
-- will contribute re-focus suggestions

ThinkAfter (currentFB, iruleRB, fruleRB, refocus_suggestions);

-- Merge refocus suggestions with current global agenda to
-- reconsider most likely investigator bases;
-- Return handles to first two choices

evalfocus (gloLal_agenda, refocus-suggestions, firstchoice,

Reusabifity Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 20

0 secondchoice);

iZ not (first-choice - NULLINFERENCEBASE) then

-- Perform context switch since a refocus is indicated

UpdateTAUContext (current inference base, irule RB, qruleRB,

f rule .RB, questions, localagenda);

currentinferencebase :- firstchoice;

AcquireTAUContext (currentinferencebase, iruleRB, qrule_RB,
frule-_RB, questions, localagenda);

end if;

Think (currentFB, iruleRB, qrule RB, local-agenda);

-- Think again before leaving or continuing the loop
-- Stop when no further inference processing can take place

exit when (firstchoice = NULLINFERENCEBASE) and
basic_configuration. agendas.einpty (local-agenda);

-- Now test the three failed exiting conditions carefully

end loop;

end if;

end DTAU;

The Think, Ask and Update modules for this advanced AdaTAU interaction scheme
function just as they did for the basic centralized version of AdaTAU. The ThinkAfter
module functions almost identically to Think except that after all lRules are considered
as described for Think, FRules are processed which generate new, or additional, focus
switch suggestions that are to be merged with the current focus agenda. The main part of
DTAU is structured as an Ada loop with explicit exit. When the indicated conditions
occur, no fmther inference progress can be made within the fact base.

The actual consideration and management of focus switches is assigned to the pr)-
cedure eval_focus. Eval focus returns with the top choice for which inference base
should be considered next. Typically, where there are only a few inference base possibiJ-
ities, it is likely that the top choice will be the same as the current inference base, and the
local agenda will have items remaining on it. In this case, inference will continue by
executing the basic TAU sequence again. When a context switch is required, the old
context information is saved as necessary (by UpdateTAU Context) and a new context
established by calling Acquire TAU_Context. The design currently relies on

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 21

Acqu¢eTAUContext to produce the actual rule bases and question bases that air
required by the individual TAU modules.

Reusability Library Framework AdaTAU 08 June 1990

Ad&TAU User's Manual 22

1P 4. AdaTAU System Components

The major conceptual components of AdaTAU are mapped onto compatible Ada
definitions that take advantage of relevant Ada features. For the most part, AdaTAU
concepts are effectively captured by Ada packages that provide an abstract data type
view of the concept. At the core of AdaTAU, we provide an integrable family of Ada
packages, each of which is identified with a key concept of the AdaTAU approach.

Identifying the data objects to be manipulated by the A6aTAU inferencer is a very
straightforward task. The objects correspond directly to the activities that take place dur-
ing an inference cycle. These activities involve firing rules, taking questions from a local
question agenda and asking them, processing inference base context switches through the
focus agenda and processing facts within a fact base. Consequently, the objects that the
AdaTAU inferencer is most directly concerned with are facts and fact bases, rules
(IRules, QRules and FRules), rule bases, and agendas. The corresponding ADTs, how-
ever, build upon and are associated with other objects as well as each other (see figure 4).
Note that this figure only depicts the basic AdaTAU configuration and does not show
packages that make ,ir the advanced AdaTAU configuration.

For example, facts and fact base schemas are the components which constitute fact
bases. Facts also make up fact lists, which in turn are components of both IRules and
QRules. Response schemas are a component of questions, which are in turn an addi-
tional component of QRules. Mules and QRules are used to instantiate their respective
they are fired. Rule bases are converted to rule lists when they need to be examined by

higher-level routines. Fact bases can be converted to fact lists in a similar manner.

The routines included in these ADT packages are designed to provide the basic
minimal primitive operations needed by any application utilizing the ADTs. The pro-
vided operations fall into two general categories: those that modify an object (creating,
adding, deleting, etc.) and those used to examine the objects (extracting compolients,
iterating through lists and tables, etc.). In the AdaTAU application, the modifying opera-
tions will for the most part be used by the RBDL processor to create and build objects
and by higher-level inferencer routines to update fact bases. The routines for examining
3bjects, on the other hand, will be used by the inferencer and for debugging by AdaTAL
builders.

Each ADT package contains routines for converting objects to a structure suitable
for storing in a file and for manipulating tables of such persistent structures. Using these
routines, the application writer can initialize these tables, add, delete, and retrieve objects
from tables, load a table from a file, store a table to a file, and delete a table (thus freeing
the memory it occupies). This scheme allows the state of an AdaTAU session to be
frozen and stored, and then used to start up the session at a later time.

There are some characteristics that are common to all of these ADTs. One is that
the standard "=" and ":=" operations use "share" semantics. That is, two objects are not
equal ("=") unless they are actually the same object. Similarly, assignment (":=") results
in the left-hand side of the assignment simply referring to the same object as that

AWL, represented by the right-hand side. Operations which provide "copy" semantics are pro-
vided in all packages. These operations are equivalent (which returns true if two objects
arc identical, but not necessarily the same object) and copy (which returns an identical,

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 23

schemsScheuma

Fact Rule.

~~"A can be emveitcd to B'

Figure 4. Basic AdaTA- Component Taxonomy

but separate, copy of its input parameter).

All ADTs also have an associated create operation which performs any
implementation-dependent initialization necessary. Each object must be "created", using
this routine, before it can be used in any other operation. After an object is declared, but
before it is "created", it is said to be null. Each ADT package provides a constant which
represents this null value, so an object can be compared to this null constant (using "=")
to determine whether or not it has been created. Where appropriate, an exception is
raised if an operation is attempted on a null object.

All of the operations that add to or delete from an obj~ct are "hard". That is, an
"add" operation raises an exception if the component to be added already exists within
the object (unless it makes sense for a particular object to have multiple copies of identi-
cal components, as is the case in a few situations). Similarly, a "delete" operation raises
an exception if the component to be deleted does not exist within the object. "Probe"
functions are also provided which test for the conditions which would lead to an excep-
tion.

Each ADT is described in more detail in the separate subsections which follow. For
each ADT (Ada package), the following informatio.i is provided:

* the package name of the ADT

Reusability Library Frarvework AdaTAU 08 June 1990

AdaTAU User's Manual 24

* a brief description of the ADT

* the major objects and types of the ADT

* the major operations supported by the ADT.

Each of the objects and operations is summarized with a brief explanation clause.
More information about these objects and operations can be found within the Ada source
files containing the actual package specifications. The information presented in this
document is minimal compared to the description given in the ADT itself, and
corresponds to a snapshot of a particular version of the ADTs. Information presented
here may be incomplete, or there may Ix. inconsistencies between this document and the
latest versions of the ADTs themselves. As such, the interested reader is encouraged to
read the ADTs for the most up-to-date and complete information about each ADT. Each
file is formatted with a standard header and includes comprehensive descriptions of the
contents and basic semantics of each package.

Several of the ADTs require that collections of objects of a particular type must be
maintained; the Tau Lists generic package has been provided to implement all the list
structures used in AdaTAU. The data structure provided is a simple, singly-linked list.
Operations are provided for crzating empty TauLists (Create_TauList), adding items to
the list (BuildList), iterating through a list (Reset, MoreItems, and NextItem), search-
ing for a particular item (Search Item), deleting a particular item (Delete_Item), and test-
ing a list for emptiness (Empty).

R

Reusability Library Framework AdaTAU 08 JneU 1990

AdaTAU User's Manual 25

0,4.1. Facts

Package Name

Facts

Description

This package defines the abstract data type fact. Facts, conceptually, are made up of two
parts: an attribute and a value. For example, the pair (looptype, while) can be viewed as

a fact stating that the loop under consideration is a while loop. Routines are provided for
creating facts, as well as for extracting the attributes and values of facts. Functions are
also provided to convert attributes and values to strings and vice versa. Additionally, a
routine is provided to extuact s fact-s uniquelidentifier value. Finally, persistence rou-
tines are included that are used uy higher-level packages to save files of facts.

Objects
type AttrType is private;

-- This is the type of the attribute part of a fact.

type Value Type is private;
-- This is the type of the value part of a fact.

type Fact is private;
-- A fact can be thought of as an (attribute, value) pair.

type FactTable is private;

-- Facts are saved to files in the form of fact tables

NullAttr : constant AttrType;

NullValue : constant ValueType;

NullFact : constant Fact;
-- This is the value of a fact before it is "created"

Operations
Convert Attr(2)

two overloaded operations under this name; one converts st'ings to objects of type attrjtype, the
other converts objects of type attr_t.ype to strings.

Convert Value(2)
two overloaded operations under this name; one converts strings to objects of type valuejype, the
other converts objects of type value._type to strings.

Create
creates a fact from a given attribute and value.

Copy
returns an identical, but separate, copy of a fact.

GetId
returns the unique-identifier component of a facL

GetAttr
returns the amibute part of a facL

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 26

0 Get Value
returns the value pan of a fact.

Equivalent
returns true if the attributes and values of two facts are identical.

CreateFactTable
creates an cmpty fact table.

SaveFactTable
saves table in a file identified by a name string.

Open-Table
retrieves table from a file identified by a namc. string and prepares it for reading.

Delete Table
releases the memory used for table.

Store Fact
stores a fact in table.

Retrieve ById
returns a fact with a specific identifier id which is in a table. Returns NULL-FACT if no such fact
exists.

MoreEntries
returns true if there are more facts to be returned from table.

Next-Entry
retrieves, through a specified paimnetcr next, the next fact in table.

Reusability Library FrameworL AdaTAU 08 June 1990

AdaTAU User's Manual 27

4.2. Fact Lists

Package Name

Fact Lists

Description
This package defines the abstract data type fact list. A FactList is simply a list of facts
to bk used where such lists are needed in rules, etc., (e.g., antecedents, consequents) and
to provide a way to examine the facts in a fact base. They are also used various other
places in the AdaTAU system. The implementation of fact lists relies on an instantiation
of the generic package Tau-Lists, instantiated with the type fact. Routines for creating
and building lists, as well as for getting the first fact in the list, for getting each succes-
sive fact in the list, for searching for a particular fact, for deleting a fact from the list, and
for determining if a list is empty or not, are all provided through the Tau-Lists ,ackage.
A function for finding the fact associated with a particular attribute in the list is provided
through this package.

Objects
package NewLists is new TauLists (Facts.Fact, Facts.Equivalent);

-- Tau Lists is instantiated to implement Fact Lists

subtype FactList is New Lists.TauList;
-- the actual fact list type

Operations
Copy

makes an identical, but separate, copy of a fact list.
NullAndFree

produces a null list and releasts any dynamic storage associated with dhe list.
MergeLists

merges two fact lists together into a single list.
Equivalent

determines whether or not t%.) fact lists contain equivalent facts in the same order.
Same Facts

determines whether or not two fact lists contain equivalent facts, without regard to order.
Search Value

given a list and an attribute, finds the value(s) associated with that attribute in the list.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 28

4.3, Fact Value Lists

Package Name

FactValueLists

Description

Instantiates TauLists with fact values. This allows lists of fact values to be created
independent of a given fact schema (for example, in the fact parameters package).

Objects
package FactValueLists Pkg is new TauLists (Facts.ValueType);

-- Equivalence operation defaults to "-", with copy semantics)

subtype ValueList is FactValueListsPkg.TauList;

NallValueList constant ValueList :- Fact_Value_Lists_Pkg.NullList;

Operations
CopyOneval

copies a single fact value.
others

At o derived from the FactValue LLssjPkg instantiation of the generic package Tau_Lists.

Reusability Libri-y Framework AdaTAU 08 June 1990

AdaTAU User's Manual 29

0 4.4. Fact Schemas

Package Name

FactSchemas

Description

This package defines the abstract data type FactSchema. A FactSchema is a structure
which defines the form of any fact(s) associated with a particular attribute. A
FactSchema includes the name of the attribute, an indckation of whether it is multi-
valued or single-valued or can take on any arbitrary value, and an optional list of values
that the fact can take on. Routines are provided to create a fact schema and to retrieve all
of the various components of a fact schema. As well, a function is included which
checks a fact for validity with respect to the fact schema. Persistence routines are also
included that are used by higher-level packages to save files of Fact_Schemas.

Objects
package ValueLists renames FactValueLists.FactValueListsPkg;

subtype ValueList is Fact Value Lists.ValueList;
-- This is the type of the list of values that an attribute
-- can take on.

type Fact Type is (One_Of, SomeOf, Any);
-- This indicates whether the fact can take on one of several
-- user-enumerated values, some of several user-enumerated
-- values, or any arbitrary value.

type Fact_Schema is private;
-- Thia type holds the schema associated with a single attribute.

type Schema Table is pzivate;
-- Fact-schemas are saved to files in the form of schema tables

NullFactSchema : constant Fact_Schema;

Operations
Create

creates a fact schema for a given attribute, with a given facLttype and, in some cases, a list of possi-
ble values.

Null And Free
null&ies a fact schema and releases any dynamic storage associated with it.

Copy
creates an identical, but separate, copy of its input parameter.

GetAttr
extracts the attribute from a fact schema.

GetType
extracts the fact-type from a fact schema.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 30

GetValues
extracts the list of values from a fact schema.

Equivalent
compares the attributes, fact_types, and value lists of two fact schemas to see if they are equivalent

Valid
checks a fact for validity with respect to schema.

CreateSchemaTable
creates an empty schema table.

SaveSchemaTable
saves a schema table in files.

OpenTable
retrieves a schema table and prepares it for reading.

Delete Table
releses the memory used for a schema table.

Store Schema
stores a fact_schema in a schema table.

More Entries
determines if there are more factschemas to be returned using ncxLentry.

NextEntry
retrieves the next factschema in a schema table.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 31

4.5. Fact Base Schemas

Package Name

FactBaseSchemas

Description

This package defines the abstract data type FactBaseSchema. A FactBaseSchema is
a component of a fact basc and dictates what facts are allowed to be added to the fact
base. It defines which facts are single-valuc and which are multi-valued, which must
take values from a set of values enumerated by the user and which may take any arbitrary
value. It also defines what attribute values are allowable. A FactBaseSchema is a col-
lection of FactSchemas (from the package FactSchemas), each of which defines the
schema associated with a particular attribute. As well, a FactBaseSchema is a com-
ponent of a Fact_Base, defined in the package FactBases, and defines the form of facts
that can be placed in the fact base. Routines are provided to create an empty fact base
schema, to add a fact schema to a fact base schema, to convert a fact base schema to a list
of fact schemas (to facilitate examining the schema), to search for a fact schema associ-
ated with a particular attribute, and to check a fact base schema for emptiness. There is
also a group of routines included which check facts, fact schemas, attributes, and fact
lists for validity with respect to a fact base schema.

Objects
type Fact SaseSchema is private;

-- This structure holds the schema for an entire fact base.

package SchemaLists is new Tau-Lists (FactSchemas.FactSchema,
FactSchemas.Equivalent);

subtype SchemaList is SchemaLists.TauList;
-- List form of collection of individual schemas

Null Fact_Base_Schema : constant Fact Base Schema;

Operations
Create Fact Base Schema

creates an empty Fact base schema.

Compose Fact_Base_Schema
composes fact base schema, according to thz schema list provided, which can be further filled with
repeated calls to add4.schema.

Copy
creates an identical, but separate, copy of its input parameter.

Null And Free
nullifi, and release associated dynamic memory, for a particular fact base schema.

AddSchema
adds a fact schema to a fact base schema.

ChangeLabel
change the label of a fact base schema.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 32

DumpSchema
converts a fact base xhema to a list of fact schemas in order that the fact base schema can be more
easily examined.

GetLabel
returns a fact base schema's label.

GetId
returns the fact base schema's unique identifier.

Get Schema
ietums the factschema associated with the attribute in the. fact base schema parameter.

Empty
checks a fact base schema for emptinmes.

Valid (4)_
four different operations under this overloaded name; checks a fact, attribute, fact list, or fact schema
for validity with respect to a fact base schema.

Equivalent
checks all of the components of two fact base schemas to see if they are equivalent.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAIJ User's Manual 33

4.6. Fact Bases

Package Name

Fact-Bases

Description

This package define- the abstract data type Fact_Base. A fact base is simply a collection
of facts with an asso ated fact base schema which is used to monitor the validity, or
admissability of facts that are added to the fact base. Fact bases also have a label and an
internal identifier. Fact bases can be used to collect facts into logically related groups. A
routine is provided for creating fact bases. A fact base can be built by successively put-
ting facts into it using the install routines. A function is provided to check if a fact is
valid for a particular fact base. Routines are also provided for searching for a particular
fact, finding a value for a particular attribute, deleting a fact from the fact base, extracting
the fact base schema, label, and identifier from a fact base, changing a label, and deter-
mining if a fact base is empty or not. If the individual facts in the fact base need to be
examined, then the base can be converted to a FactList (from the package FactLists),
using Dump-Base, and then examined using list routines. Operations me also provided
to determine if two fact bases have equivalent fact base schemas and consistent facts. Set
operations are also provided for fact bases. Some operations are also included which are
ued. K.A hai r leve•l nnl•-runac tro e-,e rTrclctpnt x,PrctvcT of fort hnepe tn% filac

Objects
type Fact-Base is private;

-- A fact base can be thought of simply as an unordered
-- collection of facts, along with a schema defining what facts
-- are admissable.

subtype Base_List is FactLists.FactList;
-- just the facts in a fact base

NullFact_Base : constant FactBase.;

NullBaseList constant Base-List
FactLists.NewLists.Null_List;

Operations
Create

creates an empty fact base with the given fact base schema.

Compose
composes a fact base. according to the constituents provided, which can be furthe- filled with
reeated calls to install.

Install (2)
this name is overloaded with two operations; one adds the a parameter of type fact to a fact base; the
other adds an attribute - value pair to a fact base.

Union
c•eates the union of two fact bases.

ReusabiLity Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 34

Intersection
creates the intersectior of two fact bases.

Difference
creates the difference of two fact bases.

Copy
creates an identical, but separate, copy of its input parameter.

Null And Free
nullies a fact base releasing any storage occupied by the fact base.

Delete Fact
deletes a fact from the fact base,

Change_Label
change the label of a fact base.

DumpEase
converts a fact base to a fact list for easier examination of the facts.

GetLabel
returns the label of a given fact base.

Get_Id
returns the fact base's wfique identifier.

Get-Schema
returns the fact base schema of a given fact base.

SearchFact (2)
this name is overloaded with two operations; one searches for a given fact in the fact base; the other
searches for a given attribute.

Search Facts
returns all the facts associated with a given attribute.

Subset
determines if one given fact base is a subset of another.

Empty
checks a fact base for emptiness.

Valid
checks a given fact for validity with respezt to a given fact base.

Consistent

Compatible
determines if two fact bases have equvalent fact base schemas.

Equivalent
checks the fact base schemas and all the facts associated with two fact bases to determine if they are
equivalent

Reusability Library Framework AdsTAU 08 June 1990

AdaTAU User's Manual 35

4.7. Fact Parameters

Package Name
FactParameters

Description

Fact parameters are essentially requests for facts required by or provided by an AdaTAU
inferencer. Each fact parameter specifies the attribute for which a corresponding value is
required at the time the parameter is imported or exported. The "protocol" of the fact
parameter indicates the desired reaction to the absence of a value for the desired attri-
bute: silent failure (Optional Protocol), provision of a default (Default Protocol), or rais-
ing an exception if the fact parameter is explicitly required for the inference to be valid
(Mandatory Protocol). The defaulis are specified via fact_value_lists, which serve for
"'ne of", "some__of' and "any" type facts.

Objects
type FactParameterProtocol is

Mandatory, -- absence of corresponding fact raises exception
Default, -- absence result in default value(s)
Optional -- absence results in no action

type FactParameter(Protocol : FactParameterProtocol :-Mandatory
is private;

-- the type itself

NullFactParameter : constant FactParameter;

Operations
Create (4)

overloaded for various types of integrity checking; one ignores checking any schemas, one checks
nnlu Z EinnIAP fap vrhomu ~nn ýhperc a cunalp fr, h1avcp nhm nnr-,' rhpr"c twn fart harp- -rh-hmRC in

order to allow a legal exchange between two different fact base schemas.

Attribute
returns the fact attribute of the parameter.

Protocol
rtutrns the fact protocol of the parameter.

Default Values
returns the default value of the fact parameter.

Search Fact (2)
thisname is overloaded with two operations; one retums a fact corresponding to a fact parameter in a
fact hase, over-riding the protocol spcified in Parameter with Protocol; the other returns a fact
coresponding to a fact parameter in a fact base, according to Fact_.Protocol of the fact parameter.

Valid (2)
this name is overloaded with two operations; ooe reports whether the parameter that would be
formed from the specified attribute, protocol, and default value would be valid with respect to the
given fact base schema; the other reports whether the parameter is valid for the fact base schema.

Reusability Library]Iaramework AdaTAU 08 June 1990

AdaTAU User's Manual 36

Created
Checks whether a successful Create was applied to the fact parnmeer.

Transfer
moves facts bctweemn fact bases via fact parameters.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 37

4.8. Fact Parameter Lists

Package Name
FactParameterLists

Description

Provides a composite layer of operations over fact-parameters, for operating on lists of
fact parameters.

Objects
package New Lists is new TauLists (FactParameters.FactParameter);

-- Equivalence operation defaults to "-", with copy semantics

subtype FactParameter_List is NewLists.TauList;
-- the type itself

Operations

none except as provided in the Tau.Lists abstraction.

" ~i

b Le0

Reusability Library Framnework AdaTAU 08 June 1990 i-

AdaTAU User's Manual 38

4.9. Mules

Package Name

Irules

Description

This package defines the abstract data type hule, or inference rule. brules, conceptually,
can be thought of as two sets of facts: the antecedent (the facts that must be in the fact
base in order for the rule to fire) and the consequent (the facts that are inferred and added
to the fact base when the rule fires). Irules also have an external label which is strictly
for the convenience of the user and is not used internally at all. There also is an internal
unique identifier for each Irule. Irules also contain an internal flag which signals whether
or not the rule has been fired. Another component of an Irule is a textual justification.
Irules can be created using the routine create. Before this, however, two FactLists
(from the package Fact-Lists) must be built and then passed to the create routine as the
rule's antecedent and cons"queni. Routines are also provided to extract the label, the
identifier, the antecedent, the consequent and the justification from an Irule, and to set,
clear, and check the fired flag and to change the label. Persistence routines are also
included that are used by higher-level packages to save files of Irules.

Objects
3subtype Text is String (l..400);

-- used for an Irule justification

type Izule is private;
-- An Irule can be thought of as two sets of facts, an antecedent
-- and a consequenc.

type Irule Table is private;
-- Irules are saved to files in the form of Irule tables

NullIrule : constant Iru.e;

Operations
Create

creates an Irule from two fact lists and a label.
Copy

creates an identical, but separate, copy of its input parameter.
NullAndFree

replaces an irule with a null irule, freeing any dynamic storage occupied by irule contents.

ChangeLabel
change an Irule label.

SetFlag
sets the "fired" flag of an Irule to true.

ClearFlag
sets the "fired" flag of an Irule to false.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 39

Get Label
extract the label from an Irule.

GetId
extract the id from an Irule.

GetJustification
extract the justification from an Irule.

Get Antecedent
extract the antecedent from an Irule.

GetConsequent
extract the consequent from an hIle.

CheckFlag
checks the "fired" flag of an Irule.

Equivalent
checks the antecedents and the consequents of two Irles to determine if they are equivalent.

CreateIrule__Table
creates an empty IWle table.

Save IruleTable
saves an Irule table in files.

Open-Table
retrieves an Iule table and prepares it for reading.

Delete-Table
FVICUS~b UlC IIeoIury usna ioi anl Jutl WIUCI.

Store Irule
stores an Irule. in an Irule table.

More Entries
determines if there are more Wules to be returned using nexLentry.

NextEntry
retrieves the next Irule in an Irule table.

Re•sability Library Framework AdaTAU 08 June 1990

.'AaTAU User's Manual 40

4.10. FRules

Package Name

Frules

Description

This package defines the abstract data type Frule, or focus-suggesting rule. Frules, con-
ceptually, can be thought of as having several components: a set of conditions, or facts,
that must be in the fact base in order for the rule to fire, an inference base identity
referencing another TAU inference context wherein inferencing can either be begun or
continued (captured as another ADT implemented as the package inferencebases), a
numerical weight, and an English explanation of why this context switch should be con-
sidered in this particular instance. This inference base identity is supplied as a generic
parameter. Frules also contain an internal flag which signals whether cjr not the rule has
been fired. Routines are provided to create Frules and to extract the different com-
ponents that are visible to the user. Routines are also provided to set, clear, and check
the "fired" flag in a Frule.

Objects
type Text is new String (1 .. 400);

-- U5d anywhere text is needed.

type Frule is private;
-- A frule can be thought of as a set of facts (an antecedent),
-- an inference base suggestion, a numerical weight, and a justification
-- in English.

type Frule Context is private;
-- An frule context associates an frule and an inference context

subtype FruleSiteContext is FruleContext;
-- An frule site context joins together an frule and an inference
-- context that it was applied in

subtype Fxule Switch Context is FruleContext;
-- An frule switch context joins together an frule and an inference
-- context that it suggests

type Frule Table is private;
-- Frules are saved to files in the form of Frule tables

NullText constant Text :- Text' (1 3 -> '1',
others => '

NullFrule constant Frule;

Operations
* Create

creates a new frule with the given components.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 41

Create Site Context
creates a new frule.site_context with the given components.

Create Switch_ Context
creates a new frule switch context from the given components.

Copy
returns an frule which is identical to, but separate from, the rule parameters.

CopyFrule Switch Context
returns a frule._conext which is identical to, but separate from it's input.

Null And Free
replaces Rule with a NullFrule, freeing any storage associated with the rule

ChangeLabel
replaces the label of rule with new_label.

SetFlag
sets the flag signalling whether or not the rule has fired to true.

ClearFlag
sets the flag signalling whether or not the rule has fired to false.

Get-Label
extracts the label of a frile.

GetId
extracts the identifier of a frule.

Ge _Conditions
ebvhr~tc th, fort !iet that ic th. emt nf 'nn•-itinn_ npmA-pid tn 1- qtdfieA fn the ntile to fire.

GetContext
extracts the inference-base identity to be suggested when the rule fires (this type is the generic
parameter to this procedure).

Get Weightextracts the weight, tc priority, of the frule.

GetJustification
extracts the justification associated with the frule.

CheckFlag
returns the value of the flag signalling whether or not the rule has fired.

Get-Switch Context Id
returns the context id of the switch contexI.

GetSwitch Context Frule
returns te frule id of-the frule which suggested the context switch recorded in the switch context.

GetSite Context Id
returns the context id of the site context.

GetSite Context Frule
returnsthe frule id of the fule associated with the site in the site context.

Equivalent
returns true if the conditions, inference base contexts, snd weights of the two rule parameters are
equal.

Equal Fru.leSwitchContext
returns true if the two -rule-context's are equal.

Create Frule Table
creates an e-mpty (Wue table.

SaveFrule Table
saves table in several files, using name to generate the file names.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 42

0 Open-Table
using file name parameter to generate the file names. retrieves table. from several files and prepares it
for reading.

Delete Table
relases the memory used for table.

Store Frule
sires rule in table.

MoreEntries
returns true if there are more frules to be returned from table.

NextEntry
retrieves, in parameter next. the next frule in table.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 43

4.11. QRules

Package Name

Qrules

Description
This package defines the abstract data type Qrule, or question-asking rule. Qrules, con-
ceptually, can be thought of as having several components: a set of conditions, or facts,
that must be in the fact base in order for the rule to fire, a question to be asked (a question
is another ADT, described in the package questions), a numerical weight, anti an English
explanation of why this question should be asked in this particular instance. As well, the
Qrule contains an external string identifier which is strictly for the convenience of the
user and is not used internally at all. There also is an internal unique identifier for each
Qrule. Qrules also contain an internal flag which signals whether or not the rule has been
fired. Routines are provided to create Qrules and to uxtract the different components that
are visible to the user. Routines are also provided to set, clear, and check the "fired" flag
in a Qrule, as well as to change a Qrule's label. Persistence routines are also included
that are used by higher-level packages to save files of Qrules.

Objects
subtype Text is String(l..400);

-- Used for Qrule justification.

type Qrule is private;
-- A Qrule can be thought of as a set of facts (an antecedent),
-- a question to be asked, a numerical weight, and a justification
-- in English.

type Q .ule Table is private;
-- Qrules are saved to files in the form of Qrule tables

NullText : constant Text :- Text' (1 .. 3 -> "?', others -> 1 ,);
-- An undefined text value

Null_.Qrule : constant Qrule;

Operations
Create

creates a Qrule from its constituents.
Copy

creates an identical, but separate, copy of its input parameter.

Null And Free
"replae a qrule with a null qrule, freeing any dynamic storage occupied by qrule contents.

Change ýLabel
change a Qrue label.

SetFlag
sets the "fired" flag of a Qrule to true.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 44

ClearFlag
sets the "fed" flag of a Qrule to false.

GetLabel
extract the label from a Qrulc.

GetlId/
extract the id from a Qrulc. /

GetConditions
extracts the list of condition facts from a Qrule.

GetQuestion
extracts the question from a Qrule.

GetWeight
extracts the weight from a Qrule.

GetJustification
extract the justification from a Qrule.

CheckFlag
checks the "fired" flag of a Qrule.

Equivalent
checks the antecedentsc and the consequents of two Qrules to determine if they are equivalent.

CreateQruleTable
creates an empty Qrule table.

SaveQruleTable
saves a Qrule table in files.

Open Table
retrieves a Qrule table and prepares it for rading.

Delete Table
releases the memory used for a Qrule table.

Store Qrule
stoms a Qrule in a Qrule table.

More Entries
determines if there are more Qrules to be retumed using nexLentry.

NextEntry
retrieves the next Qrule in a Qrule table.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 45

4.12. Questions

Package Name

Questions

Description

This package defines the abstract data type Question. Questions are comprised of the text
of the question and a response table, which contains the possible answers to the question
and a list of facts to be asserted for each answer. The response table is of type
Response-Schema, defined in the package ResponseSchemas. Each question also con-
tains an indication of whether the user may choose just one or more than one answer to
the question. Additionally, questions have an external string identifier which is strictly
for the convenience of the user and is not used internally at all. There is also is an inter-
nal unique identifier for each question which is generated when the question is created.
Routines are provided to create questions, to extract the various components from a ques-
tion, and to change the label of a question. Persistence routines are also included that are
used by higher-level packages to save files of questions.

Objects
type Text is new String (G .. 400);

--lised for - .,eion text.

type Num Choices is (OneOf, SomeOf);
-- This type indicates whether the question is a "one-of" or a
-- "some_of" question, i.e., whether the user can pick just one
-- or more than one answer.

type Question is private;
-- A question includes the English text of the question and a
-- response table, representing the possible answers and the
-- facts to be asserted for each answer.

-- Questions are saved to files in the form of question tables

NullText : constant Text :- Text'(1 ... 3 -> ,?',
others => '

-- Value used for undefined text

NullQuestion constant Question;

Operations
Create

creates a question from the given label, text, number of choices, and response schema.

Copy
creates an identical, but separate, copy of its input parameter.

NullAndFree
meplaces a question with a null question, freeing any dynamic storage occupied by question contents.

Reusability Library fi'amework AdaTAU 08 June 1990

AdaTAU User's Manual 46

Change Label
change a question label.

Get Label
extract the label from a question.

GetId
extract the id from an question.

Get-Text
extract the text from a question.

Get NuM Choices
determines whether a given question is "one of" or "some oF.

GetResponseTable
extracts the response schrma from a question.

Equivalent
checks the antecedents and the consequents of two questions to determine if they are equivalent.

CreateQuestion Table
creates a empty question table.

SaveQuestionTable
saves a question table in files.

Open-Table
retrieves a question table and prepares it for reading.

Delete Table
releases the memory used for a question table.

StoreQuestion
stores a qu.3estion in a question table.

More Entries
determines if there are more questions to be returned using nextentry.

Next-Entry
retrieves the next question in a question table.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 47

4.13. Response Schemas

Package Name

ResponseSchemas

Description
This package defines the abstract data type Response_Schema. A ResponseSchema
stores the possible responses for a particular question and the facts to be asserted for each
response. Each question has a component of type Response_Schema which defines the
response structure of that particular question. This structure must be provided when the
question is created. A ResponseSchema is made up of structures of type
ResponseType, another exported private type. Each ResponseType structure embodies
a posiible user answer and the facts to be asserted for that answer. There is also is an
interral unique identifier for each response which is generated when the response is
created. Routines are provided to create and add responses to response schemas, to con-
vert a response schema to a list of answers (to examine them more easily), to retrieve the
fact list or ResponseType associated with a given answer, to ch-xk an answer for vali-
diry with respect to a response schema, to extract the id, answer, and facts from a
response iype structure, and to test a response schema for emptiness. Persistence routines
are also included that are used by higher-level packages to save files of Response-Types.

Objects
AnswerLength i constant Integer :- 50;

type Answer Type is new String (I .. Answer Length);
-- This is the type of a single answer.

type Response Type is private;
-- This type is usec' to package up information about a single
-- possible response to a question. It contains the answer itself
-- and the list of facts that are to be asserted for that answer.

type ResponseSchema is private;
-- This is the type of the table, stored with each question,
-- which dictates what responses are valid and what facts will
-- be asserted for each response.

type Response table is private;
-- Response types are saved to files in the form of response tables

Null Answer constant AnswerType :- AnswerType' (i .. 3 -> '',
others -> '

--- value provided for undefined answer

NullResponse : constant Response-Type;

NullResponseSchema : constant ResponseSchema;

Rcusubility Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 48

Operations
Create

creates an empty response schema.

Copy
creates an identical, but separate, copy of its input parameter.

AddResponse (2)
this name is overloaded with two operations; one adds a response specified by a fact list and answer
value to the response schema table; the other adds an already defined response object to the response
schema table.

Null and Free
'eplaCes a schema with a null schema, freeing any storage occupied by schema contents.

Null andFreeResponse
replaces a response with a null response, freeing any stoxage occupied by response contents.

Dump_Schema
converts a response schem. to a list of answers in order to more easily examine the schema.

Empty
checks a response schema for emptiness.

Valid
checks an answer for validity with respect to a response schema.

GetFacts
retrieve the fact list associated with a given answer.

retrieve the ResponsejType associated a givei, answer.

GetId
extract the identifier from a ResponseType.

Get Answer
extract the answer from a ResponseType.

Get_7acts
extract the fact list from a ResponseType.

ResponseEquiv
returns true if all the components of each of the response parameters are equal, without respect to
order.

Equivalent
checks all the answers and fact lists, without respect to order, of two response schemas to determine
if they are equivalent.

Create _ResponseTable
czeates an empty rý.sponse table.

SaveResponseTable
saves a response table in files.

Open-Table
retrieves a response table and prepares it for reading.

Delete Table
releases the memory used for a response table.

StoreResponse
stores a response in a remponse table.

Retrieve By_Id
returns a response from a response table with a given id.

More Entries
determines if there are more responses to be returned using nextentry.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 49

NextEntry
retrieves dm next response in a response table.

Retsability Librsiry Framework AdaTAU 08 June 1990

AdaTAU User's Manual SO

4.14. Rule Bases

Package Name

RuleBases

Description

"1 his package defines the abstract data tpe RuleBase. A Rule. .ase can simply be
thought of as a collecxtion of riles. Rule base, can be used to collect rules into logically
related groups. This package is generic, and thuc it -an be ased to create any type of rule
base. 'The package also depends on instattations of the genic package Tau...ists,
which is instantiated with the rule type that is input to this package. A rule base caa be
created using the routine Create_RuleBase. R can theu be filled with repeated calls to
Install. Rules can be deleted from a rule base with Delete. To examine the rules in a rule
base, the base can be converted to a rule list (an instantiation of Tau_ Lists), using
Dump_.Base, and then examined using routines provided in the Tau_.Lists package. Rou-
tines are also provided to detei-mine whether or not a RuleBase is empty, to change a
label, to search for a particular rule in a rule base, to search for a rule given the rule's id,
and to extract a rule base's label and id. The set operations union, intersection, differ-
ence, and subset are also provided.

flbect

type Rule_Base is private;
-- A Rule Base can be thought of as a collection of rules.

package RuleLists is new TauLists tRuleType, RuleEquiv);

subtype Rule List is RuleLists.TauList;
-- A list form of a rule base.

NullRuleBase : constant Rule-Base;

Operations
Create Rule Base

creates an-empty rule base.

Install
adds a rule to a rule base.

Copy
creates an idcntical, but separate, copy of its inplt paianetek.

Null And Free Rule Base
nullifi:es a rule- be Teleazing any dynawic storage occupied by the base.

Union
cfCa1s die union oC iw3 rule bases.

Intersection
ceates the intersection of two rule bases.

Difference
creates the dilfereno: of two rule bases.

Rcusabllity Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 51

4 Delete Rule
deletes a rule from the rule base.

ChangeLabel
change the label of a rule base.

Dmwtp Base
converts a rule base to a rule list for easier examination of the rules.

GetLabel
returns the label of a given rule base.

Get Base Id
"returns the rule base's unique identifier.

SearchRule
searches for a given rule in a rule base.

SearchBy Id
searches for a rule with a given id.

Subset
determines if one given rule base is a subset of another.

Empty
checks a fact baxse for emptiness.

Equivalent
compares all the rules in two rule bases, without respect to order, to see if they are equivalent.

SaveLabels
saves the label and identifier of a rule base in a file.

Initialize Base
initializes an empty rule base using the label and identifier retrieved from a file.

Reusability Library Framework AdaTAU 08 Juiw 1990

AdaTAU User's Manual 52

4.15. Agendas

Package Name

Agendas

Description

The ADTs defined in this package are information lists, agenda records, and Agendas.
These abstract data types comprise the implementation of homogeneous agendas (mean-
ing that all iteins on the agenda are of the same type). This package is generic, so it can
be used to implvment seveal kinds of agendas. Agendas are used to mainmvain collec'ions
of "items", eailh of which bas a weight of some type. Items are placed on the agenda,
along with an t ssigned weight, and then items can be taken off of the agenda in order of
their weights. 71e7 same item can be put on the agenda more than once. In this case, the.
weight associaio with the item is the sum of the weights assigned each time the item
was putt on the agenda. The type of the item itself must be input as a generic parameter,
as well as a struc.ure . defined by the user, which contains information associated wish the
act of placing the ihem on the agenda. Lists of these information structures are main-
tained along with &:ch of tie items on the agenda. For example, an item in a question
agenda could be the question i•'self (or a reference to it), with the information list consist-
ing of the Qrules (or zeferences to Qrules) whose firing led to the posting of the question
to the agenda. Another generic parameter is Weibht_Type, which is the type of the
weights aisociated with each itero. C-,mparison and addition operators must also be pro-
vided for this type. If no operadorns for WightjTyp, are specified, then thcy default to
standard ",reater than" and addition for whatever type WeightType is. For each
exported type, routix'es are provide. to make i.ienticol but separmte copies of objects, and
to compare two objects for eqtiiv.ilence. These routines are meant to provide copy
semantics. In order to implement these ccrrectiv, routines are needed fo: Lraking copies
of, and testing for equivalence of, objects of the private types that are pawsecl in as gen-
eric parameters. These routines must also be provided as generic pa-ramutes.

OUjccts
type Info L.st is private;

1.1.A71 info-list can be thought of as an ordered collection of
-- infornation structures of type information.

t•>e Aývn•da_Rec is pxivate;
-- A-i a g-eerýOarec has three components: the item that the
....a, c kepa tr:ack of, the composite weight of this item,

..an a list of the information that the user wants to keep
--..track of.

type hgenda is privatei
----.. aigenda ia eimp2.y a collection of agenda records.

Nui./ infOLis ; ccnstant Info__List;

~il Aqn&,._P~ec : cor.a'zant AgqndaRec;

,,101 Agda : constanit Agenda;

ReuseNi'ty Library Frumaeweork AdaTAU 08 June 1990

AdaTAU User's Manual 53

Operations
CreateAgenda

creates an empty agenda.
AddItem

places an item on the agenda.
Copy (3)

this name is overloaded with three operations; one copies an infolist, one copies an agenda_rte and
one copies an entire agenda; each creates a" identical, but separate, copy of its input parameter.

Null1AndFree
replac1s an agenda with a null agenda, freeing any dynamic storage occupied by agenda contents.

DeleteWeightiestRecord
removes the weightiest agenda record (including an agenda item) from an agenda and returns the
record.

DeleteOneRecord
deletes a given agenda record from an agenda.

Duinp_Agenda
converts. an agenda to a list of agenda items in order to more easily examine the agenda.

ResetInfo
prepares an information list for iterating.

Next Info

;tras lie information struture following the structure rturned by the last call to next_info in an
h&,nv,•ion lisL

MoreInfo

returns tr'o if there are more information structures that have not been returnc 'by calls to next info.

SearchInfo
searchLs for a given information structure in an information list.

GetItem
extracts the agevda item from an agenda record.

Get-_Weight
extracts the w6ight from an agenda record.

GetInfo
exmsx.s die inforinmion list from an agenda record.

SearchRecord
irturni the agenda record associated with a given agenda item.

Empty (2)
this nwne is overloaded wAth two operations; one checks whether an infojlist is empty and the other
chocks whether an agencLa ia emp.y.

EquivalentRec
eewns true if aldi the componemts of the two ageada record parameters are equivalent (using
lte.._Equiv).

ESqui-:alent (2) •
this name is overloaded with two operations; separate operations are provided to check equivalence
for information lists and agendas.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 54

4.16. Basic AeaTAU Configuration

Package Name

BasicConfiguration

Description

This package brings together in one place all of the data types and operations needed by
an inferencer. All of the underlying abstract data types and their associated operations
are accessible from this package. Where necessary, generic packages are instantiated to
provide the needed data stuctures. This package also defines procedures to be used by
an inferencer for firing rules and for asking questions from an agenda. The firing routines
can be used to fire both Irules and Qrules. For each type of rule, routives are provided to
determine if the antecedent of the rule is satisfied (or if the rule is "primed"), to fire a
rule, to perform both these operations together, and to perform these two operations on
each rule in a rule base. The routines associated with asking agenda questions include
routines for posing a question, recording an answer, and processing that answer by assert-
ing the facts associated with the answer(s) received.

Objects
subty-pe Tau_F7actý_Baze iz atBss.Fc ae

-- make basic fact bases type visible to user of this package

package IruleBases is new Rule-Bases
(Irules. Irule,
Irules.Null_Irule,
UniqueIdentifiers. Uid,
Irules.GetId,
UniqueIdentifiers. Ecqual);

subtype IruleBase is IruleBases.RuleBase;
-- the bacic irulebase type via rule bases generic

package QruleBases is new RuleBases
(Qrules. Qrule,
Qrules.Null_Qrule,
UniqueIdentifiers.Uid,
Qrules.Get_Id,
UniqueIdentifiers.Equal);

subtype QruleBase is QruleBases.RuleBase;
-- the basic qrule-base type via rule-bases generic

package QuestionBases is new RuleBases
(Questions.Question,
Questions. Null Question,
Unique_Identifiers. Uid,
Questions.Get_Id,
UniqueIdentifiers.Equal);

saibtype QuestionBase is QuestionBases.RuleBase;
-- the basic question-base type via rule bases generic

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 55

package OAgendas is new Agendas (UniqueIdentifiers.Uid,
Qrules. Qrule,
Integer, Copy Uid,
Unique Identifiers.Equal,
Qrules.Copy,
Qrules.Equivalent);

subtype QuestionAgenda is QAgendas.Agenda;
-- the basic question-agenda type via the agendas generic

package UserPesponses is new TauLists (ResponseSchemas.ResponseType);

subtype TauResponse is Fact Lists.Fact List;
-- make a repsonse type visible to the user of this package

Operations
Primed (2)

this name is overloaded with two operations; one operation determines if an irule is ready to fire, the
other determines if a qnle is ready to fire.

Fire (2)
this name is overloaded with two operations; one fires an irule by asserting its consequent facts, and
the other fires a qrule by placing a question on the agenda.

Prime And Fire (2)
t As name is overloaded with two operations; each operation checks that a rule (irule or qrule respec-
tively) is ready to fire, and then, if it is, fires it.

Fire Base (2)
this name is overloaded with two operations; for each :ule in the rule base (irulc_base or qnde,_base
respectivelj), it is first determined if the rule is ready to fire and then, if it is, the rule is fired.

PoseQuestion
poses a question to the user.

Record Response
taiA-s an answer or answers from the user.

p roc.s R~esponse

asserts the facts associated witli each answer.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 56

4.17. Generic Advanced AdaTAU Configuration

Package Name

AdvancedConfiguration

Description

This generic package brings together in one place all of the data types and operations,
beyond those provided in the BasicConfiguration, needed to support a distributed
TAU-style inference system. All of the new underlying abstract data types and their
associated operations are accessible from this package. Where necessary, generic pack-
ages ame instantiated to provide the needed data structures. This package also defines
procedures to be used by an inferencer for firing rules and for dealing with the focus
agenda. In particular, this package defines the abstract data type inference context. An
inference context collects all of the individual rule bases, as well as a local agenda main-
taining the state of interaction with the user, so that a Think - Ask - Update style infer-
ence scheme can be applied to multiple distributed rule bases. The basic rule base identi-
ties established for a centralized version of AdaTAU are imported from
BasicConfiguration. This package defines an frule base used to provide rule base con-
text switching, as well as the inference context definition itself. There is also is an inter-
nal unique identifier for each inference context which is generated when the inference
context is created. Routines are provided to create an inference context, to extract the
various components from an inference context, and to change the label of an inference
context We define an operation to fire FRules. As in the case of IRules and QRules, rou-
tines are provided to determine if the antecedent of the rule is satisfied (or if the rule is
"primed"), to fire a rule, to perform both these operations together, and to perform these
two operations on each rule in a rule base. The routines associated with the focus agenda
provide for evaluating the agenda to see if a pending focus switch should be processed,
packaging up the data structures providing the state of the local inference process, and
decomposing an inference state description as extracted from the global agenda.

Objects
package FrulesInst is new Frules (ContextReferenceType,

NullContext._Reference, Copy__Reference,
Equal-Reference);

subtype Frule is Frules Inst.Frule;

package FruleBases is new RuleBases (Frule, FrulesInst.NullFrule,
Unique_Identifiers. Uid,
FrulesInst.Get_Id,
UniqueIdentifiers.Equal,
FrulesInst.Equivalent);

subtype Frule_Base is FruleBases.RuleBase;

AM type Inference Context is private;
-- A context includes the associated rule bases as well as question
-- base necessary to provide for an inference process to take place

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 57

package FAgendas is new Agendas
(Context Reference-Type, FrulesInst.FruleSwitchContext, Integer,
CopyReference, Equal _Reference, FruleslInst.Copy_FruleSwitchContext,
FrulesInst.EqualFruleSwitchContext);

subtype FocusAgenda is FAgendas.Agenda;

package FSuggestions is new TauLists (FrulesInst.FruleSwitchContext);

subtype Focus_Suggestions is FSuggestions.TauList;

NullContext : constant InferenceContext;

NullFocus Suggestion : constant Focus_Suggestions
FSuggestions. NullList;

Operations
Create

creates a new inference context with the given components.

Copy
returns a inference context which is identical to, but separate from, context.

PutContext Reference Id
--, A i'-SL I~ =- uEUftS* .S ' .iS "&,l

Put-Imports
inserts an import fact parameter list into an inference context.

PutExports
inses an export fact parameter list into an inference context.

Put_ ruleBase
inserts an irule base into an inference context.

PutQruleBase
inserts a qrule base into an inference context

PutFruleBase
insmts an frule base into an inference context.

PutQuestionBase
inserts a question base into an inference context.

PutFactBase
inserts a fact base into an inference context

Put Schema
inserts a fact base schema into an inference context

PutLocalAgenda
inserts a question agenda into an inference context.

UpdateAgenda
update the agenda for the context with a new agenda.

GetContext ReferenceId
retmns the context's application id.

GetImports
returns the context's import fact parameter list.

GetExports
returns the context's export fact parameter list.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 58

Get-Table Id
returns the context's table identifier.

Get_IruleBase
retrns context's irulebase.

Get_QruleBase
returns context's qrulebse.

GetFactBase
returns context's local fact base.

Get_Question Base
returns context's questiotbase.

GetFrule Base
reurns context's frune.base.

GetSchema
returns conLext's fact base schema.

GetLocal_Agenda
retunts context's local question agenda.

Equivalent
returns true if all of the components of the two context parameters are equivalemL

Primed
auempts to satisfy the antecedent of rule. It searches fbase for each of the facts in rule's anteceden.
If it successfully finds them all. then it returns tMr.

fires rule by adding the associated context switch suggestion to contextswitch-suggestions.
Prime And Fire

rst checks rule to see if it is primed and then, if it is, fires it-
Fire Base

for each rule in rbese, the antecedent of the rule is first checked, using fbase, and then, if the
antecedent can be satisfied, the rule is fired.

0
Reusability Library F~ramework AdaTAU 08 June 1990

AdaTAU User's Manual 59

0 4.18. RLF Instance of Advanced AdaTAU Configuration

Package Name

Librarian_Configuration

Description

This package declares an application-specific instance of the advanced_configuration
package. In particular, a specific type: a context identity is passed as a generic parameter
whose values serve to identify particular inference contexts within a larger application
specific data structure. This particular example is designed to provide an interface
between the AdaKNET subsystem and AdaTAU where inference contexts are associated
with generic concepts within an AdaKNET network. The AdanetObjectNameType
from the Adanet_NameTypes package serves as the context identity for the
LibrarianConfiguration.

Objects
package Lib _Hybrid is new AdvancedConfiguration

(AdanetNameTypes.Adanet Object Name-Type,
AdanetNameTypes.Nul l_AdanetObjectName,
AdanetNameTypes.Copy_Adanet_ObjectNameType,
AdanetName_.Types.EqualiAdanetObiectName__Tvoe):

subtype LibFrule is Lib Hybrid.Frule;

subtype LibFruleBase is LibHybrid.FruleBase;

subtype Lib_Inference._Base is LibHybrid.InferenceContext;

subtype Lib..FocusAgenda is LibHybrid.FocusAgenda;

NullLibInferenceBase : constant LibInferenceBase :=
LibHybrid. NullContext;

subtype Lib_Inference BaseId is AdanetNameTypes.AdanetObjectNameType;

subtype LibFactParameterList is FactParameterLiSts.FactParameterList;

Reusability Library Framework AdaTAU 08 June 1990

,t. daTAU User's Manual 60

4.19. Component Persistance Management

Package Name

Persistence

Description

This package contains routines to store and retrieve AdaTAU data objects to and from
files. Routines are provided to save and restore fact bases, fact base schemas, Iule bases,
Fact Parameter Lists Qrule bases, Frule bases, question bases, and agendas, as well as to
save an entire AdaTAU session. This package also renames and re-exports various Free
operations to manage memory.

Objects
subtype InferencerNameType is String (1..80);

--- Provides name type to associate with named files

Operations
Is-Saved

returns hue if inferencer ,ame corresponds to an inferencer that has been previously saved.

Save Labels (2)
saves labels and unique identifiers corresponding to fact base schemas and fact bases respectively to
a file.

SaveFactBase
saves a fact base and its associated fact base schema.

SaveFactBaseSchema
saves a fact base schema.

SaveIrule Base
saves an irule base.

SaveQruleBase
saves a qrule base and its associated question base.

SaveFruleBase
saves an frWe base.

SaveQuestionBase
saves a question base.

SaveAgenda
saves a local question ageada.

SaveFactParameterLists
saves the. import and export fact parameter lists.

Save-Inferencer
saves an ikle base, a qrule base, a question base, and an agenda.

InitializeBase
initializeý an empty fact base using a label and identifier retrieved from a file.

Initialize Schema
initializes-an empty fact base schema using a label and identifier retrieved from a file.

Load Fact Base
loads a-fact base and its associated fact base schema.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU Us.. s Manual 61

Load FBase Schema
lfoads a fict base schema.

Load Irule Base
loads an irule base.

Load QruleBase
loads a qnull base and its associated question base.

Load Question-Base
loads a question base.

Load-Agenda
loads a local question agenda.

Load Frule Base
Toads an frule base.

LoadFactParameterLists
loads the import and export fact parameter lists.

Load Inferencer
Toads an irule base, a qrule base, a question base, and an agenda.

RestartInfer,;ncer
loads the irule base, qrule base, questio; bxe, and agenda from files.

Free Fact Base
makes Fact bas- -. null fact base and releases any storage occupied by the fact base.

FreeWbaseSchema
sn1-c- fo"rt .-vio-rrh--nv a na. 1l fox, koce, crhMrno Mnd untlococ an- .trr-.vo rrr-.nind . ., tin, fart hoc.
schema.

FreeIrule Base
makes irule base a null irule base and releases any storage occupied by the iiule base.

FreeQruleBase
makes qrulc base a null qrule base and releases any storage occppied by t'e qrule base.

FreeQuestion Base
makes question base a null question base and releases any storage occupied by Te question base.

FreeAgenda
makes agenda a null question agenda and releases any storage occupied by the questiur, agenda.

FreeInferncer
releases all storage oc-upied by the irule base, qrute base, question bas,., fact base, and question
agenda.

FreeF rzule Base
makes h[-le base a null frule base and releases any stui-,k o.:cupied by the frule base.

Free Fact Parameter Lists
makes Imports and Exports Null fact parameter lists.

Reusability Library Framework Adi'AU 03 j June 390

AdaTAU User's Manual 62

4.23). 4lasic AdaTAU Persistance Management

Package Name

StaticPersistence

Description

This package provides high-level load/save operations for AdaTAU inferencers.

Objects
subtype InferencerName Type is Persistence.InferencerNameType;

Operations
SaveInferencer

saves all the input objects in files.
Load Inferencer

Toads the irule base, qrule base, question base, and fact base schema from files.
FreeInferencer

releases the memory occupied by the irule base, qrule base, question base, and fact base schema.

Reusability L]rary Framework AdaTAU 08 June 1990

AdaTAU Urtr's Manual 63

411. Distributed AdaTAU Persistance Management

Package Name
Lib StaticPersistence

Description
This package provides ttigh-levei load/save operations for Librarian/distributed AdaTAU
inference bases.

Objects
subtype InferenceBaseNameType is

AdanetNameTypes.Adanet ObjectNameType;

Operations
SaveInference Base

saves an inference base in files.

Load Inference Base
Toads an inference base from files.

FreeInfercnce Base
reicases ihe memory occupied by an inference base.

Reuswbility Library Framework AdaTAU 09 June 1990

AdaTAU User's Manual 64

0 4.22. Reverse RBDL Translator

Package Name
Dump_Tau_Components

Description
This package provides operations to generate a listing of an AdaTAU knowledge base
consisting of rule bases, question base, fact base schema and fact base to the currently
assigned output file (the operator's console by default). This listing is produced in RBDL
format, suitable for input to the RBDL processor for initializing the internal representa-
tion required to execute AdaTAU.

Objects
-- none exported by this package

Operations
DumpFs chema

list a single fact schema (normally as part of a fact base schema).

DumpFb_Schema"
list an entire fact base schema.

DumpFact
list a fact (normally as part of a fact list included in a rule description).

Dump Flist
list an entire list of facts (normally as part of a rule description).

Dump Fbase
list an entire fact base.

Dump I rule
list an IRule description (normally as part of a rule base description).

Dump Irbase
lisý an enti-e MRule base.

Dump Rs ch;ea
list a reVsponse scheuta (normally as part of a que.tion descri'ti 3n

Dump Question
list a question (normally as part of a question base, or an individual QRule).

Dump Qrule
list a QRule description (normally as part of a rule base description).

Dump Qrbase
list an entire QRule base.

Dump Qbase
list an entire question base.

DumpAll
provide a complete RBDL description of an AdaTAU knowledge base including Maole base, QRvle
base, question base, fact base schema, and fact base.

Reusability Library Fr am.work Ada'FAU 08 June 1990

AdaTAU User's Manual 65

4.23. AdaTAU Inference Cycle Components

Package Name

TauCycle_Componeinfls

Description

This package provides the three subprograms that implement the Think - Ask - Update
operations. These operations are basic to Vie ru!e-based inference approach planned for
the Reusability Library Framework. Rules must be provided as distinct MRule and QRule
bases. All of the operations exported here are composite operations built from primitives
supplied in the basicconfiguration. The structure of these composites is defined by the
inference mechanism summarized by Think - Ask - Update.

Objects
-- no new objects are exported

Operations
Think

provides for a forward-chained generation ol facts basrd on a current fact base, and suppled rule
bases. When Think returns control to its cpAer, no xrable rules exist in either rule bese, and no
further modifications to the fact base are possible peuding processing of the agenda.

Ask
handles interaction with a user, based on an agenda of user queries wLich are. scheduled as a result of
rules fired during the Think phase. Ask delivers a respon-e object that will be pvocessed by Updat.

Update
modifies the fact base based on a user': response raý-wYde'i during Ask. UpXate alsu povides truth
maintenance to keep the fact base consistew. after user d&rived modifications have been processsed.

Reu.zobility Llbrary Fra-mework AdaTAU t'& June 1990

AdaTAU User's Manual 66

w4.24. Distributed AdaTAU Inference Cyde Components

Package Name

Dtau CycleComponents

Description

This package provides several additional subprograms that along with the Think - Ask -
Update operations, provide the basic services of the distributed, rule-based inference
approach used by the Reusability Library Framework. In particular, these operations
provide for the processing of focus rules, and handling of focus switches to other rule
bases.

Objects
-- no new objects are exported

Operations
Think After

provides for a forward-chained generation of facts based on a current fact base, and supplied rule
bss. When TinkAfter retums control to its caller, no firable rules exist in either irule or frule
bases, and no furuler immediate modifications to the fact base are possible before either processing
the local agenda or ptcfooming a context switch.

Acqui r _Tau _ontext
Tni infeience base parameter indirectly provides a handle to the individual TAU components that
enable a local investigation to be begun or continued. AcquireTAU_Context utanslates this handle
to the actual object instances required.

SaveTauContext
proviIes a meai's of drpositing the local state information about a local investigation just before a
context switch ij rbout to be made. In particular, tle local agenda is likely to have changed since the
current investigation wr- beMtor or resurned. Savc_TAU_Context urs the inference base handle to
save information that can be rtcalled later.

EvaW Pocus
F tl 1he fo',tis agenia, Eval_Focus will produce the current top two choices for furthec local ijvesti-
gation.

.4 Reu-tab;ty Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 67

4.25. AdaTAU Basic Infercance

Subprogram Name

Tau

Description

The Tau subprogram provides a basic entry point to the rule base services provided by
AdaTAU. The main modules employed by TAU (Think, Ask, Update) are themselves
encapsulated in a separate package (TauCycleCompor-ents). The rule base facilities
that are defined by AdaTAU are made available through the basicconfiguration package.

Tau
is organised according to the Think - Ask - Update paradigm. This approach
delays user interaction as long as forward-chained pl%,-.ýss occurs using the avail-
able riles (Think). User interaction is managed through the use of an agenda struc-
ture. User responses arm processed by ine module (Ask) while consequent changes
to the fact base are handled by another (Update). The basic loop continues until
the agenda is exhausted, and no further fact derivations are possible.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 68

4.26. Distributed AdaTAU Inference

Subprogram Name

Dtau

Description

The DTAU subprogram provides a basic entry point to the distributed rule base services
provided by AdaTAU. The main modules employed by DTAU are themselves encapsu-
lated in a separate package (DTAUIcyclescomponents). The rule base facilities that are
defined by AdaTAU are made available through the basicconfiguration package as well
as an additional package of basic services for use in a distributed setting: an instantiation
of advanced-configuration.

Dtau
provides a skeletal distributed rule base inference plan that expands upon that pro-
vided in standard TAU. From the current global agenda, DTAU determines an ini-
tial TAU context in which to begin. A basic TAU sequence is invoked, refocus
suggestions produced after any primed FRules are fired are merged with the global
agenda, and an inference base at which to continue inferencing is determined.
Focus switches take place when a global agenda item is at the head of the global
agenda and there is no data that suggests this pending context switch should be
ignored. After each such context switch, the basic TAU sequence is executed at
least once. The current implementation supports an eager surrender strategy where
any pending context switch is executed regardless of the local agenda. The basic
loop continues until both the current local agenda as well as the focus agenda are
exhausted.

Abwu

Reusability Library lFramework AdaTAUt 08 June 1990]

AdaTAU User's Manual 69

5. AdaTAU Specification Language - RBDL

The AdaTAU inferencer manipulates many different objects of different types. The
different types of objects are described in the Abstract Data Types description in this
document and by the Ada package specifications themselves. Before the inferencer can
begin the Think-Ask-Update process, instances of these objects must be created, tailored,
and initialized. Operations are provided to do this, but the knowledge engineer must
guide this process by specifying the numbers and types of objects to be created, specify-
ing various properties which tailor the objects to a specific application, and supplying the
values which are to be used to initialize the objects. The RBDL (Rule Base Definition
Language) provides a simple vehicle for the knowledge engineer to use to accomplish
this task. The specification language is used to specify exactly what objects are to be
created, to manipulate various properties of these objects, and to give them initial values,
where appropriate. 'The RBDL processor translates the RBDL specification provided by
the knowledge engineer into calls to routines in the ADT package specifications which in
turn create and manipulate the objects.

RBDL specifications are translated into an executable Ada procedure by the RBDL
processor program. This program is itself written in Ada and when compiled provides
the RBDL translation capability. The RBDL processor program is included with this
version of AdaTAU.

DflflI "vrxrA- tlip mn^avc ti-i cyur-Wr ifh,, di^nto.,it eif ,ifiwn..-' hocise thn~t or.- ,u1iA tr,

conduct a TAU-style inference directed toward manipulating and updating a global fact
base. RBDL also supports the use of multiple inference bases that communicate with
each other through the use of fact parameters and the firing of focus rules. RBDL
specifications of the state of an AdaTAU session can also be generated by AdaTAU itself
to stand as a basis for comparison between a start-up state for an AdaTAU session, and
the final state after no further inference progress is possible. Note that the current version
of distributed AdaTAU does not support the generation of RBDL corresponding to the
state of a distributed inference session. Using an editable inference base description, it
will be possible to run AdaTAU from the point it left off, after appropriate new rules or
f•-ptc arp pntorpAw ,Erpdpt1%Y intrn thp vcuud O1•RT- ert•iifir-tknn

The Backus-Naur Form of the RBDL syntax is provided in Appendix A. The syn-
tax was designed to resemble Ada code as much as possible. RBDL provides a declara-
tive syntax for the specification of rule bases and fact bases. RBDL specifications are
themselves tratislated to calls on specific routines that are included in the various Ada-
TAU ADT packages which are described in the implementation level section. An Ada-
TAU RBDL specification consists of a set of definitions that are of several basic types:
initial fact base definitions, fact base schema definitions, question base definitions, rule
base definitions, inferencer definitions and fact parameter definitions. A single
specification can contain any number of question base or rule base definitions. However,
an RBDL specification file may contain only one instance of a fact base schema
definition or an initial fact base definition.

Fact Base Definitions

A fact base can be defined by providing an identifier for it, an identifier specifying a
fact base schema that will define the structure of the fact base, and the facts to be used to

Reusability Library Framework AdaTAU 08 June 1I9'M

AdATAU User's Manual 70

0 initialize the fact base. The fact base schema identifier must correspond to a previously
defined fact base schema and the facts must be consistent with this schema. The RBDL
processor will use the "Create" function provided in the fact bases package to create the
new fact base and to associate the specified fact base schema with it. Then the "Install"
routine will be used to put the specified facts into the fact base, one at a time. If the
knowledge engineer wishes to define an empty fact base, the keyword "null" can be used
in place of the list of initial facts.

Fact Base Schema Definitions

A fact base schema definition basically consists of a set of attribute definitions. For
each attribute, the knowledge engineer must specify a name, a type, and a list of values
that can be associated with that attribute. All the attribute names must be unique within
the fact base schema. The type of an attribute indicates whether the attribute can take on
just one of the listed values, any number of the listed values, or any value at all (in the
last case, no value list should be provided). The list of values is simply a list of text
strings. If several different attributes have the same type and the same value list, then the
names of these attributes can be grouped together and the type and value list specified
just once. Of course, an identifier must be provided for the fact base schema as well. To
create a fact base schema, the RBDL processor will create a structure of the type
factbase-schema, provided in the factbaseschemas package, and initialize it with
other operations from this package.

Question Base Definitions

To define a question base, the knowledge engineer need only provide a list of ques-
tion definitions. For each question, an identifier, the text of the question, its type, and the
list of possible responses must be provided. The type of a question is similar to the type
of an attribute. It indicates if the question can be answered with exzctly one of the listed
responses, any number of the listed responses, or with any response at all (in the last
case, no response list should be provided). For each response in the response list, the text
of the response must be provided, as well as a list of facts that will be asserted when this
response is received.

The RBDL processor will first use the "Create" routine in the Question_ Bases pack-
age (an instantiation of RuleBases) to create an empty question base. Then, for each
question specified, a variable of type response schema, provided in the
responseschemas package, will be created and initialized. The fact lists that are part of
the response schema will be created using "Create" and "BuilL._List" from the FactLists
package (which is an instantiation of the Tau_Lists generic package). This structure will
then be used by another "Create" routine in the questions package to create a question.
Finally, the question will be put in the questio-A base using "Instlrl" from the
Question_Bases instantiation of RuleBases.

Rule Base Definitions
Rule bases, and thus rule base definitions, come in three types: IRule (inference

rile) bases, QRule (question-asking rule) bases, and FRule (focus rule) bases. Either
type of definition must provide an identifier that names the inference base. An IRule
base definition must also provide a list of IRule definitions, each of which consists of two

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 71

lists of facts (representing the antecedents and consequents) and a textual justification for
the rule. Similarly, a QRule base definition consists of a list of QRule definitions. Each
QRule definition must include a list of facts representing the antecedents of the rule, an
identifier referring to a question (which must be previously declared as part of a question
base definition), a numerical weight which will be associated with the question when it is
put on an agenda, and a textual justification for the rule. Frules are structured like
QRules except that instead of a question identifier, an FRule declares a focus identifier
that names another inference context. An FRule may optionally name an export fact list
whose contents are added to a fact list which is used in conjunction with fact parameters
to control how information is passed between cooperating inference contexts.

To create an empty rule base, the "Create" routine from the appropriate instantiation
of the RuleBases package will be used. Then each ru!e will be created using another
"Create" routine in either the IRules, QRules or FRules package. Again, the fact lists
that are part of the rules will be created using "Create" and "Build_List" from the
fact-Jists package. Finally, each rule will be will be put in the rule base using "Install".

Fact Parameter Definitions

Within an inferencer definition, fact parameters are identified by name as well as
parameter class within distinct inference contexts. The collection of local contexts
defines a global inference environment and fact parameters provide a method by which
information (facts) are exchanged between individual local inference bases. Within an
inference context description, a complete list of fact parameters for the local context is
declared, where the list is organized according to whether the parameter is imported or
exported.

Using RBDL

From a RBDL specification of a local inference context, the RBDL processor pro-
duces an Ada procedure called Initialize-_1AU_Components which includes the neces-
sary calls on the operations provided within AdaTAU to build the required rules bases,
n w-ctHnn hsc fqrt hsic- wrhmna and initial far.t haqee. and make. these. nersistent for time hy

an application needing rule base services. The body of the procedure makes all the
necessary translations of the parameters to underlying data structures and makes any
necessary initializations. This procedure is embedded in an Ada library unit (main pr- p
gram) which prepares the resulting fact base for use by the application. More informa-

tion on actually using RBDL to create an application-specific rule base description and
integrating it with an application that uses AdaTAU's programmatic interface is given in
the next section.

The use of RBDL to support distributed inference base description and processing is
also possible. In particular, the RBDL processor can be used to process multiple infer-
ence bases individually, and a client application can use the DTAU procedure to initiate
in erencing at one of them.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 72

6. Using AdaTAU

In order to use AdaTAU effectively, it is advisable to prepare RBDL specifications
for the fact and rule base components that AdaTAU is equipped to process. One can
directly make use of primitive AdaTAU operations to define the necessary knowledge
base components, but to do so requires handcoding a large number of Ada procedure
calls. RBDL is provided so that a rule-based application can be constructed declara-
tively, using a template main program that requires few, if any, modifications. This sec-
tion describes how one can start with a template main program and a RBDL specification
file, and produce a woridng Ada program that is able to interact with the user and make
corresponding inferences based on the available facts and rules.

If the AdaTAU subsystem is to be embedded in a larger Ada application, then direct
calls to the relevant AdaTAU operations must be provided by the application designer.
Programmers wishing to use AdaTAU in a larger application should consult the ADT
descriptions givei, in section 4 of this manual. AdaTAU is targeted for these sorts of
embedded applications and the stand-alone example given in this section is meant to

Ada Inifial.Uzr Periat'n
RBDL Spec Procedure Infmnoer

SA -'-- -- Ad

Use~r ý.r••-•

/pp ad_ Inicren

Figure 5. Creating an AdaTAU Application

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 73

show the integration methodology to combine statically declared rule base components
with Ada code that processes internal forms of derived fact and rule bases. To show that
this internal processing is performed correctly, the example invokes a handwritten
reverse RBDL translator that writes out RBDL representations of the final forms of the
derived fact and rule bases. A complete transcript of an interactive session to produce
and run an AdaTAU application is presented at the end of *,Is section.

The necessary steps to build a working AdaTAU application are elaborated in the
next three subsections. These steps can be summarized as follows (see figure 5).

1) Use an ordinary text editor to prepare a RBDL specification file. This file contains
a description of rule bases, question bases, a fact base schema and an initial fact
base (if any) that support the domain.

2) Execute the RBDL processor on the specification file to yield an Ada procedure
capable of initializing all necessary components required before AdaTAU opera-
tions can be applied to the domain captured in the RBDL specification.

3) Compile and execute the RBDL output to produce a persistent form of the RBDL
inferencer for use by the application.

4) Using Ada with clauses as appropriate, create an Ada main program which con-
tains a call to the AdaTAU persistence routine that brings an inferencer into
memory foi processing by AdaTAU. Include references to any other AdaTAU
operations that are required by the application. Typicaly, one oi these operaions
is the TAU procedure itself which provides the Think - Ask - Update inference
mechanism (or DTAU if the application makes use of multiple, distributed
inferencers). The DumpRBDL operation is useful to check that all of the
expected rule bases, as well as a final fact base, have been installed and processed
correctly.

5) Compile and execute the deshed application program. The user interacts with the
program, and depending on the AdaTAU components chosen, persistent versions

of the in-memory data structures can be saved and restored fiom disk files.

Useina the 1faril;tie.s nf distrihbted AdaTATT remAi-re that tenriz 1 7 and. I he renrnted

for each of the localized inference bases anticipated by the application designer. In addi-
tion, the application designer must provide an application-specific scheme for locating
the various inference bases within the applications own data structures. The interested
reader is advised to consult the RLF Librarian user manual for a discussion of one
method of distributing and coordinating the use of multiple inference bases. The rest of
thls section assumes that only a single inference base is under consideration, so that none
of the facilities of RBDL that support distribution of, and communica:ion between, infer-
ence bases are relevant.

6.1. Creating AdaTAU Knowledge Bases

Appendix B contains an extended, non-distributed RBDL example showing each of
the major RBDL divisions. Whenever AdaTAU is to be applied to a new domain, it is
necessary to consider the essential information that is to be tracked and maintained about
this domain and the rules by which new information about this domain is to be deduced.
The example captures some relevant information concerning the taxonomy of general

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 74

Ada components presented by Grady Booch in his recent book [Booch87].

This RBDL knowledge base is prepared by entering it into the system text editor.
The preparer of a RBDL specification should be careful to obey the syntactic rules of
RBDL so that the RBDL processor can smoothly translate the specification into the
necessary Ada calls. However, if a mistake is made in the RBDL specification, an error
message is reported on the user's console with a line number indicating the approximate
location of the offending statement. The RBDL processor is currently limited in the way
such errors are reported and a new user may find that only the first error is reported even
when the RBDL source contains several such errors. When the RBDL processor finds no
syntax errors, the RBDL processor performs some semantic error checking on the RBDL
specification. The current version of the RBDL processor performs minimal semantic
error checking. Semantic errors not caught at generation time will be caught at run-time
by the appropriate AdaTAU routines. It is expected that later versions of the RBDL pro-
cessor will provide more robust semantic error checking with a corresponding lessening
of reliance on AdaTAU run-time error checking.

RBDL is invoked simply by executing

rbdl < -file name-

where -file_name- is the name of file containing the RBDL source. If there are no errors,
ibdl produces an Ada source file called rbdlprog.a. This file contains an Ada procedure
r.r,-At Tnfir~nr~ r which inclhdeq a Incal]ihnrncedure with header:

procedure Initialize-TAU Components
(FB Schema out Fact Base Schemas.FactBase_Schema;
Question-base out Basic__Configuration.QuestionBase;
IruleBase out Basic Configuration.IruleBase;
QruleBase out BasicConfiguration.QruleBase;
Frule Base out LibrarianConfiguration.Lib_Frule__Rase;
Initial Fact Base out Fact Bases.FactBase;
Import Fact list in out Fact_ParameterLists.New_Liats.TauList;
Export Factlist in out FactParaneterLists.NewLists.TauList) is

In addition, RBDL generates the necessary Ada with clauses to enable this procedure
th h *'rntnih=- ;n tho- rnnthvt nf rnthpr no•pecapr, AI2TAI I e.mr-P filde Thc fl1 Me chnilu

be compiled with the entire AdaTAU library visible during the compile process. After
the user compiles and executes the create Inferencer main program, a persistent
form of the AdaTAU infereincer defined by the RBDL specification is created that is then
processed by the application as required. The application program that makes use of the
RBDL rule base specification should include a with clause referencing the necessary
operations to bring the inferencer into main memory and to initialize the necessary
run-time data structures.

6.2. Building an AdaTAU Application

Once the RBDL-spczified AdaTAU knowledge base has been created by running it
t.hrough the RBDL processor, the application-specific code must be written and com-
piled. In its simplest form, an application must contain a call on the routine in the Ada-
TAU persistence package to bring an inferencer into memory for processing. Altema-
tively, if an inferencer is being developed to be used in the context of a number of disti-
buted inference b.,ses, the name of the inferencer can be used to locate and retrieve an

Reusability Library Framework AdaTAU 08 June 1990

AdATAU Umr's Mt-anual7f

inferencer for pruýessing by L. C1'TAU procedure. The following saaipke main proggran
simply illustrates this process, and includes a mainimal amnount of extma code.
with Basic_-Configuration, F'act_-Lists,

Dtau, Dump_Tau_-Contponents,
Fixed-Stn~ings, Commronio, Lib-staticPersistence, Libra ir 1 anConf igurat ion;

use- Bacic-Configuration;

procedure Lbd)._DTAtJTestDriver is

use %M'onv~rio;

Wo-kixngFact_ Base TauFact_-List :- Factlists.NewLists.Create- Tau Lis--t;
GlobalAg I-ihr1,iian-Configuration.LibFocus Agenda :-

Libra tian.Configuratioi. Lib Hiybrid.F .Agendas.Create Agenda:
E -plainIYITAU TLibrarian_-Ccnfiguration.Lib -Hybrid.Explain -_MIX -record

:'('u:ue,trae,txue,faise);

Context; Name Lib_-Static Per.si,.tence.InferenceBase Name Type;
Len Integer;

begin

Comtnrniro.Ptut fessage
("What context should this test stazt With?"):

Corninionlio.Put -Message ("(please use all lower case characters)");

ContextName :- FixedStrinq5,Pad jCormmonlo.GiatString, ContextNamp-'LENGTH);

DTau (WorKingEFact_,basu., Glob~alAg, Context-Naire, Explain _DTAtU);

1~)urnpTau-Cotnpofents,.Dunr)p_Elist (Working__Fact nDa.se);

ond YRb.L -'DTAUTostDriver;

Note that in this example, the Workingjact-Base is initially empty. However, any ini-
ii:4 fact bawc that was Eavcd when the infercnccer was ecrated will be restored as DTAU
becgins execution. The basic D-1 i.U-styic inference procedure will be executed using 'me
intcrnai forms of zhc individual fpct, question and rule bases. Finally, a simple dump of
the rr~sulting facu-: will be wiittcn by the proccdure Dump....list found in the included
AdaTAU packi~bC Dumrp9'atu-rrniporic-nts.

Ncidber of Jut laticr routiri'.s is required; however, soixic method nmust be employed
to ciratc isteripml forms of the required AdaTAIJ objecs. Aisy of the i~idividual AdaTAU
opcrafions can ke executed by the rippl~cation, and thec information produced by theset
oIpc~atiozns (typically iicw facts) can be "harvested" in a mianner consistent. with the appli-
cation. The exc',o of Ta2u or Dt~.u can change only thle fact basc componeunt so that
ihe Wtier AIJnIAU comnponetems will rcinziin unchan-ed fiumufi thir inital srat'-..

6.3. Sample Sessloii
11iis bubCctRur1 bIuwh ai samplc ui~wzipt, uhiny, the Verdix Ada Developmecnt Sys-

tciii (VAI)S) ok it S,.ii wtorksiationi, that iliustraucs the proccss of'ciciitng thc bcginniings0 of a dis;'ibjted AdaTIAU -based applica~ioxi. Ikcforz~ cxec..tirg all RLF tool, tile UNIX
CviviionnitlnZ variable RLI.LIIW3AkIES mnust be sci as appiuJpriltc. Consult the VersionI ktukiatblhy LI'ntaty Irsmel.u- k AdaTAU ORI Juuic MOO

AdQTAU User's Manual 76

Description Document for infoniation about the use of environment variables within -€e
RL,.

Only one inforenner will be crated during fts script. Other inferencers can be
created by following the steps showvn in this section. It is assumed that a text e'ditor has
been used to pt.%pare a RBDL specification file (appendix B was used in preparing this
swmple session). The applicttion-specific main program must also have been prepared
(tme sample fl'm the preceding stctiorL was used for this transcript). User entettd text
follow. the system ho,;t name prompt (% in this example). Explanatory remarks abcut the
trans ,rlpt are gven im lines begun with the Ada comment delimiter "--"•

Run the RBDL processor on a RBDL source file.

% rbdll < booech e xzmple.rbdli

-- RBDL reeponds as follows (wnen there are no errors in RBDL source).

Parsing input.
Parsi.ng completed succzssfully.
Entering attribute evaluation phase.
Exiting attribute evaluation phase.

-- RBDL generates an Ada source file which ic transferred to the directory
-- in which the RBD'. application is to be compiled.

-- Compile the generated RBDL source file in a properly initializod

-- Ada library.

% ada -.v rbdlprog.a

-- The nrme of the main subprogram is createinferencer. The main
-- Ada library containing the AdaTAU files which the current Ada library
-- refers to must include a reference to the interrupts.o cbject file
-- included in the RLF distribution.

% a.ld createinferencer interrupts.o

-- Next, the inferencer is made persistent by executing the object file.

% a.out

-- Using the make facility prouided in VADS, build the deiired AdaTAU
-- application using the required AdaTAU source files.
-- In this example, a simple test harness is being generated.

The top-level procedure is called Rbdl..DTAUTestDriver and the
-- resulting object file is called DTAU test.
-- The full AdaTA1Y librax.y must be avai able in this directory .Ir. ordor
-- to build the application.

%a.make -v PFdl DTAd_TuSt_Drivei -o DTAUteat -f distrbdltest.a

VADS tesponds as fol.lowa, showing RuccGassul com|pilations ziud final
-- link.

finading depon.lants of: diatr1bdltst.a
conqililn dit ibdl tost .3

um~b;lity Library IVrawework Ada'I'AU 08 Juie 1IM0

AdaTAU User's Manual 77

body of rbdl dt-autest._driver

spoc of rbdldtou test driver
/sada/vads5.5/bin/ald rtdl dtau test driver -o DTAU test

-- The user now executes the generated program

% DTAU test

-- Respond to the prompt with the name of the in'-erencer to begin with.

What context should this test start with?
(please use all lower case characters)
> booch._taxonomy

-- boochtaxonomy is the name of the inferencer as given in the RBDL file.

-- Note that in the display below, the explanations provided by the Test
program are not shown to reduce the included output from the test run.

The exanple application walks the user through a portion oz Giady
-- Booch's coponent taxonomy, asking questions as scheduled through
-- the fiz'ing of QRule3. The user eventually specifies one of the
-- available Booch components.

What is the component type?

c. structure
2. tool
3. subsystem

Type in the number of your response:
> 1..
Is the tool a

1. utility

3. pipe
4. sorting tool
5 .9earching tool
6. pattern matching tool
7. cther

Typo in the number of your rosponse:
> ;e
Are the sccaantios of the component preserved when more than une
thread of control exists?

1. yes
2. no

Type in tho numboe of your response:
> 1

UutL3 tho coiponlici- yualanrLtu irutual oxclusiur, or dutos the usLL have
to criOULze mutual exclusiora

HReusmblfity Library Framework AdaTAU 08 J1unt 199)

AdGTAU User's Manual 78

1. mutual exclusion guaranteed
2. user must provide mutual exclusion

Type in the number of your response.
> 2
Do objects that are part of the component have a size that is static
throughout the object's lite, or does the size change dynamically?

1. size is static
2. size changes dynanically

Type in the number of your responue:
> 2
Does the component take care of garbage collection?

1. yes
2. no

Type in the number of your response:
> 1
Is an iterator provided for this component?

* 1. yes
2. no
3. not applicable

Type in the number of your response:
>2

-- After the interaction is finished, the test application dumps out the
-- RBUL spscification, as it was on:iginally entered, alDng with the final
-- fpct base that is generited during the interaction.
-- This output ia tiuncaued iii Lh.a tU.an-Lq;Lipi after the fact base.

FACT BASE SCHEMA IS
comp-onenttype: ONE-OF

(structure,
tool,
subsystem);

granularity: ONE -rO
(monolithic,
polylit Ilic);

atructuzo type: ONEOF
(st eck,
queue,
st ring,
doquea,
rings,

ANIL al)" .

bags,
lista,

leoumblill, Library F.',amewurL AdaTIAIJ 08 Julie 1990

AdaTAU User's Manual 79

0 trees,
graphs,
other) ;

tool -type: ONE_-OF
(utility,

filter,
pipe,
sorting,
searching,
pattern-matching,
ether);

multip2e -thread3: ONE-OF
(true,

false);
mutexsprovided: ONE--OF

(true,
false);

multiple readers: ONE-OF
(true,

static--size: ONE-OF
(tru.",

false);
garbage collectionsprovided: CUTEOF

true,
falsfl:).

controlled: ONE-OF
(true,

false);
iteratorsprovided: ONE OF

(true,
false);

f ormi.: ONEOF
(sequential,

guarded,
concurrent,
multiple);

unboundedF

bundoned,;
b ou& NdEd);

form3 ONaEOF
maunagede,

utantrgled,
contrC1holld)

forw4~: C'h OF
rion4ter:.

ENDI

-- The tollow1i'aq fac.L 1.a3ev is 3 re-Iul1 cr ofeoutn liej ba~ic TAIJ
-- infercncez; thei mCCUSX initial fact bazse. obtaiwxd fzuzu tk~e K1DOL
-- pocificatiori wo~as ull.

AOL INITIAL FACT J3J)JL An[iL ILI 1r.;
(comporient type , tov
(tool typu filter.

Reusablllty 4lbrary Iramwisrk AetaATAV It Jt, WZ;ar, %

AdaTAU User's Manual 80

(multiple threads , true),
(mutexsprovided , false),
(forml , guarded),
(staticsize , false),
(form2 , unbounded),
(garbage_collection_provided , true)
(form3 , managed),
(iterator_provided , false),
(form4 , noniterator);

END inlt__fb;

IRULE BASE booch irules IS

--#######
-- The RBDL is truncated here. Finally the system prompt returns indicating
-- completion of the test run.

If there are any errors in the RBDL specification file, they must first be corrected,
and the RP'DL processor re-executed, before the desired application can be created. The
following short transcript, shows the detection of a RBDL error.
% rbdi < rbdl.example.bad
Parsing input.
syntax error on line 43 scanning Rosponses

Line 43 contains a misspelled keyword. Note that tie syntax error processing stops after
the first error is detected. The user must correct this first error and then run 1he RBDL
processor again, repeating the "correct and run sequence" until all errors have been
removed.

I

R.-urimbllllj Library 1ranwcwork Adal"AU 06 Jltti 1 l-9t

P.

AdaTAU User's Manual 81

7. Notes

This section presents some basic background material for the AdaTAU component
of the Reusability Library Framework. The following sections present the major notions
and objects that ha,'e contributed to the design of AdaTAU.

7.1. Facts

By fact, we mean any dynamic quantum of information that our system must be
able to process. Typically. facts are stored in a fairly rigid form that is designed to pro-
vide efficient access for the syutem. Some common organizational schemes are
property-boolean state pairs, or atrirhute-value pairs or more generally, triples denoting
object names, attribute names, and corresponding values. For example, we can write
<printerjhndicatorji~e.on, true>, or <printerindicatorjite, on> or <printer,
indicatorjite, on>.

Fact structures can be considerably more complicated. At oe extreme, one can
imagine English-like clauses, or arbitrary lists that can themselves contain sublists. For
example, <fatherof, sani, <husband_of sarah>> can be used to represent the fact that
sam's father is sarah'Ws husband.

Fact Bases
Coilecticn;n of facts are called fact bases. Fact hases can themselves be organized to

aidt efficient retrievaJ axn• trod ica•.ons. One connwon V.cac is to provide ax: indexing
scheniz so that individchal facts can be quickly stored and located.

Severai facts zao each conaibute some :.zcomplete facet of a situation that is to be.
repie.sented within the fact base. Fur example, <printerindicatorlite, on> vs.
<piinztr__indicatorlite, blink6ing>. On the other hand, two facts can stand in contradic-
tion to one aiother (cprimer.ndicator-lite, on> vs. <prirtrindicatorjitc, otf>) Thus
any system employing a fact .as be designed to handle related facts, and to deal
with tonwradictory facts. Of court. mde'cd is to simply ignore any fact relati-:n,-:hips
as well as any fact contradicions.

7.2. Rules

A rale is a formalized statement th,. prescribes how a fact base can be changed
based on the ciurent statc of the fact ba-,e. A very coommorn style in which to specify
rules is an if A -- then B fo.mat whcre A and B are placeholders for ore or mnore facts.
ror exanplc, we can N wniw

if <watch, gold>
then <watch, eyqcI~nsive>

Such a rule can be said to b! primed if thc fams; in the collection A ar=. all currently
withia tih. fact b ase. Chic possible action wvithin 4 rule hbrc systcyr is to add all the facts
within H to 1he fac' br:w , aftcr a :u-i bcvoncis priaz.d. Such a nrle is 'i,-id tofire.

i~e 4ntecedenLt und Ca n cqdhtd=.0'i'lmsc facts t4.1t aust be mcsc-it iiith, fact bitst befoc .'o. rulc is able to fire ate

c,,jIl! the angecedent actLs. Such fa•,t; are als, calhcd prcmist.x. Analogously, thoseý facts

1:nf;sAilty Li's-grry FI t Ia.rW', A JATAV 0S .1;sac 1990

AdhTAU User's Manual 82

which should be added to the fact base by the rule are calied the consqwjuet facts. Thus,
in the if A - then B rule formalism, A stands for the antecedent facts, and B stands for
the consequents. Consequents are also called conclusions. In general, the lists A and B
can be broken up further. For example, a rule could state that some of the facts in the A
list should be absent in order for the rule to fire. Such facts would be negative
antecedents. Analogously, some of the facts in the collection B might be identified as
facts to remove from the fact base when the rule is fired.

Rule Bases

A complete collection of rules organized to capture knowledge in a particular
domain is called a Rule Base. Just as in fact bases, collections of rules can be organized
for efficient processing. A typical use of a rule base system is to begin with a collection
of factr as well as a collection of rules, and then fire the primed rules successively,
thereby causing new facts to be added to the fact base (or old facts removed). There are
scheduling problems (for exarmiple, how to choose which of several primed rules to fire
first) and this direct approach of incrementally building up the fact base is not appropriate
in all cases.

7.j. Inference

The use of a rule base combined with a fact base to explore and draw conclusions
about a particular domain is called inferencing. There are two well-known inference
strategies for rule base systems.

Forward-Chained Inference

Forward-chained inference occurs when the consequent facts of a primed rule are
automatically added to the fact base upon the firing of the rule. Forward-chained systems
typically are used in a stand-alone fashion where an initial fact base is presented to the
inference system along with a collection of rules. The system then runs without explicit
user interaction a, the fact base is updated as a result of applying rules within the rule
base successively to the fact base.

it, 1110A. caes a AZ4.' U UL CO UA- V~ D%, .A.lL%~ I l su vt vaciv vO. i.' y OR111) .01& V LUI"L 15Cl3

quents should be added only if they are not already in the fact base. However, it is useful
to store an indication that more than one rule has lead to a particular fact being present in
the fact base (see the section on truth maintenance). When no un-primed iuiles remain,
further progress i5 not possible unless the user Lan be consulted to add new facts directly.

If more than one rule is found to be primdA, some decision must be made about
which rule is to be fired first. If rulus are :;tored and exarnIed in .,-c fixed order, one
strategy is to simply tire the first primed rule found .and go on to the next. Note that iij
the simplest case where new facts are simply being added to the h tct base. a potential
live-lock situation is encountered. Once a tult; is primid, it will always remain priuied !;o
that it cun potentially fire repuatedly. One restrictive way to hi-ndle this case is to mnak a
rule as "fired" :o as to p)1vent its re-firing. lowever, there ait ci•nomstances where at
least limited rule re-lirings might ,bc meaningful, cslpcially rules ihvolvinyg fzicts which
refer to variablh quanfticis. Such variables can have diffeicnt valucvS ovin tirnt; so that
rules which refer to theim nay be initially uiprimcd, but may t-c primed late; whem a

Rcusability LIba.'ry Fivniwork AdutAV 08l Julie I9O

AdaTAU User's Manual 83

variable's value changes. The use of rules which refer to variables also introduces the
necessity for truth maintenance (see below).

Another useful strategy is to assign weights (e.g., integer values) to rules and to
examine them in decreasing order according to their weight. Rules with high weights are
understood to be important rules which should be examined early and fired if possible.
All rules could first be ranked by weight, then examined sequentially, with any fired rules
removed from consideration.

After one pass through the rules (weighted or not), the additkio, of rule o
facts may cause other rules to become primed. Thus several passes through the Iuh dist
may be necessary before no further progress can be made.

Backward-Chained Inference
Backward-chaining occurs when a rule is exam.mzrd Jaclk t', fioit, i.e., the coiisz.-

quent fact(s) is(are) checked against the fact base first.. Be,-kwaxd-chaiinng is ozte'r, rus',.J
when the inference process is directed via intrwacticn wvid a u.-,er who s~ates a Lac(th,.t
she or he wishes to deduce. The user has thu.5 posexi a qtmery -ofle i, ert:rce :ysrn1.

The system, after first checking for the oc=.xu'-c,.A, of the desixd fact in thei fact
base, will look for rules in which the desired6 act is present as a con,;cqu,4nt. 1 such a
rule is found, the antecedents of this rule generate new queries for facts difit must be
verified subsequent to the answering of the initial qtiexy. 'hese facts are checkc,0 arialo-S. .. .,.. .. 1. , A;,• *e 4". f-,,,-,.• • * h, , -,t * ,-,'.'-nt 1% t,• Tf all r•f i ,, ;T,;"- " I

query's antecedent facts are found, the. di,;;•avd fact has beet, verified and the u'wer's query
has been answered. If working backwrads in this fishio., dws not answel" the qucrv,
other rules in the rule base are exatnined in search of ano, he;, one i, hose cons'.que-.ts
include the desired fact and the &dduction process continues. After Lit) ror. Candi'2.t,-
rules (=an be found, the inference proccf,' ends with thd. reskat that tnh desird fat could
not be verified,

Note that the consequent(s) of rules which a•,• ver1fied as part of tti:. process arX
typically not added explicitly to -J.c ,act tase. }low t.-Y, backw:trd-chaz;Jrg syst(iJih can
be programmed to run in a stand-aion2 fashion aw.d in tuis cauw, interrmdiatc facts cdn kL
added to the tact base. One modified h-rmn of a .r,,'a), back,',, ;ici'2•.iing so'ateby iv, t
first look for rules whose watccedent-, are al. i.,it;.Jly p.esent in thr fact ba.se. Hca'r ak
initial forward-chaining ALncrence t,?.ss may rO'2 followed by succeeding pj.-,es wwi'h
operate in a direct backwf.rd*-chain.,g fashio-.. Oncc ugaimm, rulvs van be w,-iL,)tcd .v> that
more "important" rules rr;ay be cl,cJ.cd earty in the irfcr.rim.%ý piccss.

Monot•nic vs. Non-i'tonotqllkc Yierenvi.

In the previous discussion, funit jm-).cssing vith rules was lifit.d to ihc adiltioa of
new facts to the fact base. S, ch :n in•c.xcicc syscne is chlled a nborwiooiL inferenmA hys.
tern. The fact base u,&dcv a wol•oivonic infceencirng package can oully grow 1,argCr.

In many applicautons that mIust moodl ulmI wodd mpicscuWt-ti,•a •d noniulati,.n ut
infornuation, ,laici is , nece tu hrindic thie dchi.vio (an%.d mtJliheation) of ,acts as wd! as
their adtition. l0cixvice •'ystt.cu% which Suppomt the rctauvliom ul ,idomilntium a•m ,.,died
non rnonotonic ,ys!Cl's1. IFul tca tht'emcschlveb b cquilppcd with r'toai a i0o(as p.uii of
the confszqucta clause of a xu'.c a:, wclJ as WWIerAS MI MI whi1uh tvmiii tho farl-, whirc are

keumablilly Llbruvy Fveriir"totk AtI'i AU 0b Juia¢ 1y9

AdaTAU User's Manual 84

to be added to the fact base. In this case, if the rule is primed, the members of the retract
list must be deleted from the fact base.

T1olh Maintenance
,Whf'u fszu.t are deleted, the effect of deletions can ripple through the fact base wvth

4.e .;It tlha the. cAztcluions of rules which were fired because of the presence of cer-
tain pA.rse facts can now be considered to be invalid. The facts added to the fact base
as a refs, t, of these now in validated rules should themselves be withdrawn. This process
cofitinlae with cieral tphr~. i. iough the fact base necessary to bring the fact base into a
CCjn.istev.., stal.

TruL, Mt7,ii./t::an. is tmi 1 pnjl of the inferencing system that manages the con-
s&itC%'.*y of tl.'.. •*•i,,rnmrv(or, wMin the fact base. An elementary example of truth mainte-
nanct- + i chci" bL.at f+or miirg•c.V'dh.-:(attdbutes, only a single fact using this attribute
can Lc part. o" the f N.o. w b Ls t n. au;-,, givei rime. For example, both of the facts
<pi-nterindicatv)i.1;.e, it> .and ,:piirc,-_ir,1icatorjite, off> cannot be simultaneously
part of the. fact base. Muli-vilut;ci autbutces must still be permitted. Strictly monotonic
inferencirg systms essentiLliy r.•-p.:fc [c truth maintenance component, and depending
on the nature and generality of tho fact base, non-monotonic inferencing systems canl
require very complicated tr•ath rnaimtc.arlc : suYsystems. For example, in the non-
nionotonic version of Ad,:,TAU, as.iertinp, fac:b rega:'jing single-val'led attributes should
automatically trigger the rerracti:a of any e.trirr' value for such attributes; i.e., :he value
nausi !Pe ulxxacpi. Ao, faUSt DscWedJ u1iit rid(;, th;%, refer to variables may need to be
withdrawn as a cor.i:quene of a change to the v.:-Atic,'s valut.

7.4. GLOSSARY

Agend .-- An agenda is a weightud list of penditiq qjGsLinhT the system desires thz user

to answer. Such questions, involve facts that the system caniot deduce directly.

Anitecedent - The antecedent refers to the "if" prt (Af rule.

Ask - That poxt of AdaTAU which a•,s quetiors. T"v quc.suon. are taken fior the
agenda.

Assert Lists - An assert list is thi list of facto, in dic ,.w cqUr ntt of a I tile, which arm to
ke addrAl tc the lci bus'ý hen the nijf lhtc.i.

BackwV1'1-Chaining -- IBa1kwtd chainin.L is a hUltm of ift cccing. W-th backward
chantihiig, dhc Iuic cLonifiniqI a cortwpicut it, t,. prcjvci is examined. If all the
prcin,,_', in the anwitmdwit aft uuc, .'t. :;u.oc,;t' nt hias becn pr.vcn. If all 0h:
ptcmi)c UIC tI-ot uu,:-, OhCw tules whic } havc tw; :.e picn;Scs us conlcquenlv, w;e
cX811it"1iid. A/ t I ho ow,.

kea~mI.4ih LIlbasy I+ i', ,CU kAds'l AJ O8 Junt 19W)

AdaTAU User's Manual 85

Conclusions - The consequents of a rule are also referred to as conclusions.

Consequent - The consequent refers to the "then" part of a rule.

Fact - A fragment of knowledge, represented in a standard form. The pair
"<compiled,yes> might represent that a code unit being tested had been success-
fully compiled.

Fact Base - A collection of facts.

Fire - A primed rule is said to fire, when its consequents are added to the fact base.

Forward-Chaining - Forward-chaining is a form of inferencing. With forward-
chaining, all rules are examined in turn. If a rule is found which has all of its
premises true, it is fired and the resulting consequent facts are added to the fact
base. This sequence is repeated until no more rules can fire.

FRules - FRules, or Focus Rules, are used to guide the focuser on its tour of investiga-
tors.

Inferencing - The process of using existing facts and existing rules to deduce new facts
is called inferencing.

Investigators - Investigators are the individual components of AdaTAU. Each investi-
gator can be viewed as a miniature expert system.

IRules - IRules, or inference rules, are those rules whose consequent contains facts to be
added to the fact base.

Primed - When all of the conditions in the antecedent of a rule are true, the rule is said
to be primed.

Premise -- A fact which corresponds to the antecedent of a rule is called a premise of the
rule.

QRuIls - QRules. or question rules, are those rules whosc consequent contains questions
to be added to the agend..

Query - A question posed by the user to the system. A quciy is often asVoiatcd with a
backwaid chaining sysitem.

Mootionlc -. A nlonvoinic hystcm is onc whcrc facts may only be Wdded to the wact base.

Now-Moiotaolc - A non-monotonic siystcm is one where facts may hc deleted hoin, as
wcll added to, the aUt base.

Rdtract l.t10 - A ictnitt libt i5 the list ul facts, in the coIn.%Nticit of a iule, which t1L to

btcusubluty Llblary It.mwui k AdaViI 08 Julc 190_

AdaTAU User's Manual 86

be deleted from the fact base when the rule fires.

Rule - A rule describes when the fact base may change. When the conditions in the "if"
part of the rule are true, the "then" part of the rule is added to the fact base.

Rule Base - A collection of rules is referred to as a rule base.

Think - Th. part of AdaTAU which processes rules. It decides which facts are to be
added to the fact base and which questions are to be added to the agenda.

Truth Maintenance - When a fact is deleted from a fact base, in a non-monotonic sys-
tem, other facts which may have depended on that fact must also be deleted.
This process of keeping the fact base consistent is called truth maintenance.

Update - That part of AdaTAU which processes the answers to questions and adds what-
ever new facts that result from the questions to the fact base.

kc ua~lbIUi I.ibi .* Frouewow k Adn'l A U 08 Jurn 1990

AdaTAU User's Manual A-1

APPENDIX A: RBDL Syntax and Summary

This appendix contains a description of the Rule Base Definition Language (RBDL). After
an overview of the BNF variant used to describe RBDL, individual language features are
presented syntactically, with each syntactic description followed by a short summary of the
semantics of each feature. Following the description of the individual features, the appendix
closes with a complete syntactic sunmary and an extended example.

A.1. Extended BNF (EBNF) Meta-Symbols

The syntax of the language is described using an extended BNF. The notation used is the same as
the notation used throughout the Ada LRM. A brief description is given below. For a complete
description see section 1.5 of the I.RM.

slower case word
nonterminal (e.g. adanet__spec).

ebold face word
linguage--token (e.g. begivi).

o {item)
braces enclose item which may be repeated zero or more times.

e [item]
brackets enclose optional item.

eiteml I item2
alternation; either iteml or itern2

A.2. RBDL EBNF and Semantics

A.2.1. AdaTAU Specification

Syntax

adatauspec
localinferencerde finition

Sernantivs

RBDL is an application specific language used to generate the svurcc for an Ada software com-
porient called a diribiuted inferencer base. A distributed infrcrncer base consists of one or more
inferenccrs, which undcr control of an external lpplication program, operate on local fact bases
and commuinicate thmugh the use of declared fact paramrntcrs. All fact parameters arc consistent
with a single global fact base schema.

The input to the KBDL pit.,ccssor is an AdaTAU spet. A local AdaTAU spec defines a fact base
shcmha, the initial value ef the shared! fact baw, a set of nuc bases, an optional fact paranictei
declardtion that describes how infonnatiot is to be shardal aimng inftcncccrm and an infcrencer.

A fact basc schcina dcfiiiiticii deteimines the set of valid facts. All tacts itrixluced by the initial
fact base defiition sad the nilc base definitions nmust be C0,1sisterit with the fact base scteia.
11Jact paranitenter must also be consistent with a corrcspouding faict base schema.

Rkumatblltj' Libriary 1-4 amewoi k Ad'i AU 08 Julie 1990

AdaTAU User's Manual A-2

A.2.2. Local Inferencer Definition

Syntax

local inferencer definition ::-
factbase schema def
[localinferenceschema def]
initial factbase def
rulebase_definitionspart
inferencer def

local-inference schema-def ::=
fact parameters is

[import list] [export list]
end fact parameters

export list ::-
exports (param descriptionlist) ;

importlist
imports (paramdescription list) ;

naram descrintion list
param description

I paramdescription , paramdescription list

paramdescription ::=
identifier => optional

I identifier -> mandatory
I identifier -> default
I identifier -> focal

rulebase definitionsart ::L (rule base detinition}

rue b::- deffinition :=

irul ebase def
I questionbase def
I qrulebasedef
I frulebase def

Semantics

A local fact base schema establishes fihe shape of facts that may be installed in the local fact base..
If the local inferencer is to pailicipate in a distributed set of inferincers, it communicates with
other inference bases through the use of fact parameters. Incoming facts correspond to fact attri-
butes listed in the import list. Outgoing fact possibilities arc identified by fact attributes on the
expor list. Fact parameters are classified according to their assumed behavior. Optional parame-
ters are those attributes for which the infernncer to which focus has passed may (but nced not)
receivc a value from the previous inferenccr. Mandatory parameters must have corresponding
values when entry into tie dcstination infenvnccr occurs. (Note that the initial fact base may be
used to provide values for such mandatory fact auributcs.) LD~lault paramncters will be cquipped
with a value ,ihcii hie destination iulcrcncer is reached cvcn if the previous inferenccr did not

kctusubility Library Iralnewurk Ada'TAU 08 June 1990

AdaTAU User's Manual A-3

pass a value. Focal parameters provide values associated with the act of performing an inference
context switch. Such values may override facts that were present in the fact base of the previous
inferencer,

The initial value of a local fact base, is given by a fact base definition. The inference rules and the
question rules which are applied by the inferencers are defincd in the rule base definition part. A
rule base is a named collection of either irules, frules or qrules. An inferencer has access to at
most one of each type of rule base.

The definition of a qrule base may be preceeded by the the definition of a question base. A quess-
tion base contains the questions which are asked during the processing of qrules. Each question
in a question base has a name. Each qrule base is associated with exactly one question base,
however multiple qrule bases may be associated with the same question base. Each qrule in a
qrule base explicitly names a question in the associated question base. If an AdaTAU spec
defines any qrule bases, then there must be at least one question base defined. If a qmle base is
not preceded by a question base, then it must be associated with a question base introduced by
another qrule base definition.

A.2.3. Fact Base Schema Definition

Syntax

factbase schema def
tact base schema identifier is

fact schemadef
{fact-schemadef}

end [identifier] ;

fact schema def ::=
attribute namelist : attributetype [attribute valuelist]

attribute namelist ::= attributename {, attribute name}

attributetype ::= some-of I one of I &ny I reference

at-tri-b--... -vuc list attribute ýai"te {, attribute valuel

Semantics
A fact base schema is a collection of fact schemas. A fact schema defines a set of values which
can be associated with an attribute name.

If the attribute name list contains more than one name, it is equivalent to a sequence of fact
schema definitions, such that each definition contains a single attribute name from the original
list. An attribute name may only appear once in a fact base schema definition.
If the resorved word SOMEOF or ONE_OF appears in the definition ther, an attribute value list
must be provided. If the reserved word ANY appears in the definition then an attribute value list
is not permitted. Likewise, if the reserved word REFERENCE appears in the definition then the
corresponding attribute names refer to files that contain the complete text of the corresponding
"fact value". No corresponding value list is permitted in tifs case as well.
The fact base schema is used to check the validity of facts introduced by other definitions. Any
fact which is used in an AdaTAU specification must be consistent with the fact base schema in

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual A4

the following ways: (1) the fact's attribute name must be in the fact base schema, and (2) the
fact's value must be one of the allowable values defined by the fact schema definition for the
attribute name. If an identifier appears at the end of a fact base schema definition, it must repeat
the fact base schema name.

A.2.4. Factbase Definition

Syntax

initial factbase def ::
initial fact base identifier is

fact list ;
end [identifier] ;

fact-list ::- null I fact {, fact)

Sentantics

An initial fact base definition defines an initial value of the local fact base. All facts in the fact
list are checked for consistency with the fact base schema. If an identifier appears at the end of a
fact base definition, it must repeat the fact base name.

A.2.5. Irulebase Definition

Syntax

irulebase def
irule base identifier is

iruledet {iruledef}

end [identifier]

irule def ::-
irule identifier is

antecedent : antecedent fact-list ;
consequent : consequentfactlist ;
[justification]

end irule ;

antecedent fact list ::= fact f, fact

consequentfactlist genfact list

gen factlist
fact
- fact

I genfact_.list , fact
I genfactlist , - fact

Reusability Library Framework Ada.TAU 08 June 1990

AdaTAU User's Manual A-5

justification
justification : textblock ;

Semantics
An irule base definition defines a named collection of inference rules. Each inference rule is
defined by an irule definition. An irule base is used by an inferencer. If an identifier appears at
the end of an irule base definition, it must repeat the name of the irule base.
Each fact list in ma irule definition must consist of facts which are consistent with the fact base
schema.

A.2.6. Questionbase Definition

Syntax

questionbase def ::=

question base identifier is
questiondef {question def}

end [identifier] ;

questiondef ::-
question identifier is

text : textblock
type : questattributetype
[possible_responses]

end q-Jestion ;

quest_attrioute type ::- someof I one-of I any

possibleresponses ::=
responses response_list

responselist ::- response (response)

response ::-
response-display (I response-display)

-> genfact list ;

response-display ::- string

Semantics

A question base definition defines a named collection of questions which may be referenced by
the qniles in a qrule base. If an identifier appears at the end of a question base definition, it must
repeat the question base name.

A question definition defines a question and intr -duces a nanme for iL Each fact in the rm~ponse
assert fact list must be consistent with the fact base schema.

Reusability Library Framework AdaTAU 08 June 1990

Ad4TAU User's Manual A-6

Al27. Qrulebase Definition

Syntax

qrulebasedef
qrule base identifier (question base identifier) is

qruledef {qruledef)
end [identifier]

qrule_def ::-
qrule identifier is

antecedent : antecedent fact list ;
question : questionidentifier
weight : weight ;
(justification)

end qrule ;

questionbaseidentifier ::= identifier

question-identifier ::- identifier

weight ::- number

Semantics
A qrule base definition defines a named collection of question rules. A qrule base definition
names the question base it is associated with. Each qrule must name a question defined in this
base. If an identifier appears at the end of an qrule base definition, it must repeat the name of the
qrule base. Each qrle in a qrule base is defined by a qrule definition.

A.2.8. Frulebase Definition

Syntax

frulebase def
frule base identifier is

frule def {fruledef}
end tidentifier] ;

frule def ::-
frule identifier is

antecedent : antecedent fact list ;
export : exportfactlist ;

focus : inferencer id ;
weight : weight ;
(justification)

end frule ;

inferencer id ::- identifier

keusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual A-7

export factlist ::- factlist

Semantics

The inferencerid named in an frule must correspond to an inferencer defined in another RBDL
inferencer specificatior F- -s in the exporLfactlist are added to the fact base just before an
inference context s...,ch is processed to support fact parameter processing. A frule base
definition defines a named collection of focus rules. If an identifier appears at the end of an frule
base definition, it must repeat the name of the frule base. Each frule in a frule base is defined by a
frule definition.

A.2.9. Inferencer Definition

Syntax

inferencer def ::=
inferencer identifier is

[(trulebase specification]
[qrulc basespecif tcation)
[frulebasespecification]

end [identifier] ;

irulebasespecification -

irule base : ident

qrulebasespecification
qrule base : ident ;

frulebase_specification
frule base : ident ;

An inferencer definition defines an inferencer. It specifies the name of the irfle base. frule base
and the qrule base to be used. If an identifier appears at the end of an inferencer definition, it
must repeat the name of the inferencer.

A.2.10. Fact

Syntax

fact ::- (attribute name , attribute-value

attribute name ::-identifier I string

attribute-value ::-identifier I string I number

Reusability Library Fran -work AdaTAU 08 June 1990

AdaTAU User's Maaual A-8

Sensantics
A fact consists of an attribute name and an attribute value. The attribute name must appear in the
fact base schema. The attribute value must be an allowable value for the attribute name, as
defined by the fact schema for the attribute name.

The actual representation of an attribute name and value is a string. For convenience identifiers
and numbers are also allowed syntactically. If the alternate forms (identifier or number) are
given, they are converted to strings by the RBDL processor, enclosing the actual text in quotes.

A.Z.11. Lexical Elements

Syntax

identifier ::- letter {[underline] letter or digit}

letter upper caseletter I lowercaseletter

number ::- digit {digit}

string "{graphic charactea}:"

textblock ;:- leftbrace {graphic character} rightbrace

Semantics

Identifiers, numbers and strings must be fully contained on a single line. Textblocks are allowed
to span multiple lines. Moreover, identifiers and number must be separated from each other by at
least one separator. A separator is either a space character, a tab character, or an end cf line.

A3. RBDL EBNF Syntax Summary

The following is a summary of the EBNF description of the RBDL syntax. Terms are intro-
duced in depth-first fashion.

adatauspec
local inferencer definition

factbase schema def ::-
fact base schema identifier is

fact schema def
{fact-_schema-_defl

end [identifier] ;

fact-schema def
attributenamelist : attribute-type [attributeval.uelist]

attribute name list ::- attributename {, attribute namte)

attribute-type ::-some of I oneof I any I reference

attributevalue list ::= (attribute-value {, attributevalue)

Reusability Library Fromework AdaTAU 08 June 1990

AdaTAU User's Manual A-9

local-inforencer-definition::
factbase schema def
[localJ-nferenc-e schema-deli
initial factbase def
rule-base_definitionjpart
inferencer-def

local-inference -schema-def
fact parameters is

[i-*mport__list) [exportjlist)'
end fact parameters;

exportlist:-
exports (param description-list) ;

import-list :
imports (parain de script ion-li st) ;

param-description-list ::-
paraxn description
Iparam--description , paramn-description list

paramn-description ;~-
identifier ->optional

I identifier a>mandatory
I identifier ->default

1 identifier => focal

rule-base-detinitionjpart {: rule-base definition)

rule-base-definition:-
irulebase def
Iquestion 'base def
Iqrulebase_def
Ifrulebase-def

initial factbase def;:
initial fact base identifier is

fact list ;
end [id~entifier];

irule def ::-
irule identifier is

antecedent :antecedent fact list;
consequent :consequent-fact-list;
[just if ication]

end irule;

antecedent-fact-list :-fact U factI

consequent-fact-list :-gen fact list

Reusability Library Framework AdaTAU 08 June 1990

AdnTAU User's Manual A-10

gen factlist :;-
fact
- fact

I genfactlist , fact
gen_factlist , - fact

weight ::- number

justification ::-
justification : textblock

fact-list ::- null I fact {, fact)

irulebase def ::-
irule base identifier is

iruledef (iruledef)
end [identifier] ;

questionbasedef ::-
question base identifier is

questiondef {question defl
end [identifier] ;

questiondef ::-
question identifier is

text : text block :
type : questattribute_type ;
[possible-responses]

end question;

quest_attributetype ::- some-of I one-of I any

possible responses ::-
responses : responselist

responselist ::- response {response}

response ::-
response display {I response display}

-> genfactlist ;

response-display ::- string

qrulebasedef
qrule base identifier (questionbase identifier) is

qrule_def {qruledef}
end [identifier) ;

questionbaseidentifier ::- identifier

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU Users Manual A- 11

qruledef ::-
qrule identifier is

antecedent antecedent fact list ;
question question identifier ;
weight weight ;
[justification]

end qrule

questionidentifier ::- identifier

frulebase def ::-
frule base identifier is

fruledef (fruledef}
end [identifier] ;

frule def ::-
frule identifier is

antecedent : antecedent fact list ;
export : exportfactlist ;
focus : inferencer id ;
weight : weight
[justification]

end frule ;

exportfactlist ::- fact-list

inferencerid :- identifier

inferencer def ::=
inferencer identifier is

[irulebase_specification]
[qrulebasespecification]
[frulebase_specification)

end (identifier] ;

irulebase specification
irule base : ident ;

qrulebase_specification
qrule base : ident ;

frule base_specification
frule base : ident ;

fact ::- (attribute-name , attribute value)

attributename identifier I string

attribute-value ::- identifier I string I number

ident ::; identifier

identifier ::- letter ([underline] letter or aigiti

letter ::- upper caseietter I lowercase_±etter

Reusability Library Framework AdaTAU 08 June 1990

AITAU User's Manual A-12

number :- digit {digit)

string ::- "(graphic-character)"

text-block ::- left-brace {graphiccharacter) right-brace

0
SRei~sbii% Library Fi amc•ork AdaT•AU 03 isne 1990

AdaTAU User's Manual B-1

APPENDIX B: RBDL Extended Example

-- -------------------- Disclaimer-----------------------------------

-- This software and its documentation are provided "AS IS" and
-- without any expressed or implied warranties whatsoever.
-- No warranties as to performance, merchantability, or fitness
-- for a particular purpose exist.

-- In no event shall any person or organization of people be
-- held responsible for any direct, indirect, consequential
-- or inconsequential damages or lost profits.

Fact base Schema Booch racts is

component-type : oneof (structure, tool, subsystem);

granularity : oneof (monolithic, polylithic);

structure t e : one-of
(s'i .., -aeue, string, deques, rings, maps,

set*. L..gs, lists, trees, graphs, other);

tool-type : one -of
(utility, filter, pipe, sorting, searching,
pattern-matching, other);

determinebasic props : one of (yes, no);
multiple threads,
mutex-provided,
multiplereaders,
staticsize,
garbagecollection_provided,
controlled,
iteratorprovided: one_of (true, false);

forml : one-of (sequential, guarded, concurrent, multiple);

form.2 : oneof (unbounded, bounded);

form3 : one-of (unmanaged, managed, controlled);

form4 : one of (iterator, noniterator);

End BoochFacts;

INITIAL FACT LASE init fb IS
(determine basic_props , yes);

END initfb:

Question base Booch_Questions is

Question Ask Component Type is
Text: (What is the component type?):

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual B-2

Type: oneof;
Responses:

"structure" -> (componenttype, structure);
"tool" -> (component-type, tool);
"subsystem" -> (component type, subsystem);

End question;

Question AskStructure Type is
Text: 1What is the structure?);

Type: oneof;
Responses:

"stack" -> (structure type, stack,, (granularity, monolithic);
"string"-> (structure type, string), (granularity, monolithic);
"queue" -> (structure type, queue), (granularity, monolithic);
"deque" -> (structure type, deque), (granularity, monolithic);
"ring" -> (structure type, ring), (granularity, monolithic);
"map" -> (structure type, map), (granularity, monolithic);
"set" -I (structure-type, set), (granularity, monolithic);
"bag" => (structure type, bag), (grdnularity, monolithic);
"list" -> (etructure__type, list), (granularity, polylithic);
"tree" -> (structure type, tree), (granularity, polylithic);
"graph" -> (structure type, graph), (granularity, polylithic);
"other" -> (structure-type, other);

End question;

Qiiestion Ask Granularity is
Text:(Is the structure);
Type: oneof;
Responses:

"monolithic (parts are not individually accessible)"

-> (granularity, monolithic);

"polylithic (parts are individually accessible)"
:-> (granularity, polylithic);

End question;

Question AskToolType is
Text: (Is the tool a):
Type: one of;
Responses:

"uti.ity" -> (tool _type, utility);
"filter" -> (tooltype, filter);
"pipe" -> (tooltype, pipe);
"sorting tool" :> (tooltype, sorting);
"searching tool" -> (tool type, searching);
"pattern matching tool" -> (tool type, patternmatching);
"other" -> (tool-type, other);

End Question;

Question Ask AboutMultThreads is
Text: fAre the semantics of the component preserved when

more than one thread of control exists?);
Type: oneof;
Responses:

"yes" -> (multiplethreads, true);
"no" -> (multiple_threads, false);

End Question;

keusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual B-3

Question AskAboutMutExclusion is
Text: (Does the component guarantee mutual exclusion, or does

the user have to ensure mutual exclusion);
Type: one of;
Responses:

"mutual exclusion guaranteed" -> (mutex_provided, true);
"user must provide mutual ei:clusion" -> (mutexprovided, false);

End Question;

Question Ask AboutMuirtReaders is
Text: (Is it possible for more than one reader to have

simultaneous access to an object?);
Type: one-of;
Responses:

"yes" -> (multiplereaders, true);
"no" => (multiplerearlers, false);

End Question;

Question Ask About Size is
Text: (Do objects that are part of the component have a size

that is static throughout the object's life, or does
the size change dynamically?);

Type: one of;
Responses:

"size is static" -> (staticsize, true);
"size changes dynamically" => (static size, false);

End Question;

Question AskAboutGbgCollection is
Text: (Does the component take care of garbage collection?);
Type: one-of;
Responses:

"yes" -> (garbage_collectionrrovided, true);
"no" => (garbage collection_provided, false);

End Question;

Question Ask AboutControlledGC is
Text: {Is garbage collection provided even when multiple

tasks are accessing different objects in the component?);
Type: oneof;
Responses:

"yes" -> (controlled, true);
"no" -> (controlled, false);

End Question;

Question Ask AboutIterators is
Text: {is an iterator provided for this component?);
Type: one-of;
Responses:

"yes" -> (iterator_provided, true);
"no" -> (iterator provided, false);
"not applicable" => (iteratozprovided, false);

End Question;

End Booch_Questions;

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual B4

qru'-e base Booch_Qrules (BoochQuestions) is

Qrule GetComponent-Type is
antecedent: (determine basic__pops, yes);
question: Ask ComponentType;
weight : 5;
justification: (The first set of categories that components are

broken down into is structures (data objects or
classes of objects), tools (operations or collec-
tions of operations to be performed on some
structure), and subsystems (a larger abstraction
comprising several structures and tools).);

End Qrule;

Qrule GetStructure Type is
antecedent: (component type, structure);
question: AskStructureType
weight : 4;
justification: (Structures are further broken down into these

general categories.};
End Qrule;

Qrule Get__Granularity is
antecedent: (structure type, other);
question: AskGranularity
weight : 4;
justification: (Structures are also categorized as monolithic

or polylithic.);
End Qrule;

Qrule Get -Tool -Type is

antecedent: (component-type, tool);
question: Ask _Tool-Type ;
weight : 4;
justification: (Tools are further broken down into these

general categories.);
End Qrule;

Qrule Multiple__Threads is
antecedent: (determine basicprops, yes);
question; Ask About Mult Threads;
weight : 3;
justification: {Whether or not a component can support multiple

threads of control determines whether it is a
strictly sequential component or one of the
other forms of non-sequential components. This
question helps determine which of the first set
of Booch's forms the component falls into.);

End Orule;

Qrule Mutual Exclusion is
antecedent: (multiplethreads, true);
question: Ask About__MutExclusion;
weight : 2;
justification: (If a component supports multiple threads of

control, then mutual exclusion becomes an issue.
If mutual exclusion is not supported, then the

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual B-5

component of the guarded type. This question
helps determine which of the first set of
Booch's forms the component falls into.);

End Qrule;

Qrule MultipleReaders is
antecedent: (multiplethreads, true),

(mutex_provided, true);
question: AskAboutMultReaders;
weight : 2;
justification: (If a component supports mutual exclusion, then

the allowance of multiple readers becomes an
issue. If the component does not allow multiple
readers, then it is a concurrent component;
otherwise it is a multiple component. This
question helps determine which of the first set
of Booch's forms the component falls into.);

End Qrule;

Qrule Size is
antecedent: (determinebasicprops , yes);
question: AskAboutSize;
weight : 1;
justification: {The second set of Booch's forms is concerned

with whether or not the objects in the component
are of bounded size. This auestion deteLmines
whether the component is bounded or unbounded.);

End Qrule;

Qrule GarbageCollection is
antecedent: (static size, false);
question: AskAbcutGbg_Collection;
weight : 1;
justification: (The third set of Booch': forms is concerned

with whether or not garb,,ge collection is
provided. This question determines whether the
component is managed or unmanaged.);

End Qrtule;

Qrule Controlled GC is
antecedent: (multiple-threads, false),

(staticsize, false),
(garbagecollectionprovided, true);

question: Ask AboutControlledGC;
weight : 1;
justification: (If the component is sequential (supporting

only one thread), then the issue of whether or
not garbage collection is provided even when
multiple tasks are accessing different objects
within the component. If so, then the component
is controlled.);

End Qrule;

Qrule Iterators is
antecedent: (determinebasic_props, yes);
question: AskAboutIterators;
weight : 0;

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual B-6

1P justification: {The fourth set of Booch'1 forms is concerned
with whether or nut the component provides an
iterator for the objects in the component. This
cquestion determines whether the component is an
iterator or noniterator component.);

End Qrule;

End Booch_Qrules;

Irule base BoochIrules is

Irule FormlSequenxia' is
antecedent: (multiplethreads, false);
consequent: (forml, sequential);
justification: {If the component does not support multiple

threads of control, then it is a sequential
component. This is one of the first set of
Booch's forms.);

End Irule;

Irule Forml Guarded is
antecedent: (multiple threads, true),

(mutex-provided, false);
consequent: (forml, guarded);
justification: {If the component supports multiple threads of

control, but does not provide mutual exclusion,
then it is a guardo d component. This is one of
the first set of Booch's forms.T;

End Irule;

Irule FormlConcurrent is
antecedent: (multiplethreads, true),

(mutexprovided, true),
(multiplereaders, false);

consequent: (forml, concurrent);
justification: (If the component supports multiple threads of

control and mutual exclusion, but does not allow
multiple readers simultaneous access, then it is
a concurrent component. This is one of the
first set of Booch's forms.);

End Irule;

Irule Forml_Multiple is
antecedent: (multiple threads, true),

(mutexprovided, true),
(multiplereaders, true);

consequent: (forml, multiple);
justification: (If the component supports multiple threads of

control, mutual exclusion, and multiple readers,
then it is a multiple component. This is one of
the first set of Booch's forms.);

End Irule;

Irule Form2 Bounded is
antecedent: (static-size, true);
consequent: (form2, bounded);

Reusabulity Library Framework AdaTAU 08 June 1990

AdaTAU User's Manal B-7

justification: {If all of the objects associated with the
component use the same amount of space
throughout their lifecycles (are of static
size), then the component is a bounded
component. This is one of the second set of
Booch's forms.);

End Irule;

Irule Form2 Unbounded is
antecedent: (static size, false);
consequent: (form2, unbounded);
justification: {If some of the objects associated with the

component change their size during tneir
lifecycle, then the component is an unbounded
component. This is one of the second set of
Booch's forms.);

End Irule;

Irule Bounded Managed is
antecedent: (form2, bounded);
consequent: (form3, managed);
justification: (If the component is bounded, then garbage

collection is not an issue, so the component is
classified as managed. This is one of the third
set of Booch's forms.);

End Irule;

I, Irule SequentialUnmanaged is
antecedent: (forml, sequential),

(form2, unbounded),
(garbage collectionprovided, false);

consequent: (form3, unmanaged);
justification: (If a sequential, unbounded component does not

provide garbage collection, then it is an
unmanaged component. This is one of the third
set of Booch's forms.);

End Irule;

Iruie Sequential Managed is
antecedent: (formi, sequential),

(form.2, unbounded),
(garbage_collection .provided, true),
(controlled, false);

consequent: (form3, managed);
justification: (If a sequential, unbounded -omponent does

provide garbage cllection, but only when one
task is accessing the component (not
controlled), then it is a managed component.
This is one of the third set 3f Booch's fonns.};

End Irule;

Irule SequentialControlled is
antecedent: (forml, sequential),

(form2, unbounded),
(garbage collectionprovided, true),
(controlled, true);

consequent: (form3, controlled);

Rewability Library R amework AdaTAU 08 June 1990

AdaTAU User's Manual B-8

justification: (If a sequential, unbounded component does
provide garbage collection, even when more than
one task is accessing different objects within
the component, then it is a controlled
component. This is one of the third set of
Booch's fori.s;

End Irule;

Irule Guarded__Unmanaged is
antecedent: (forml, guarded),

(form2, unbounded),
(garbagecollection_provided, false);

consequent: (form3, unmanaged);
justification: (If a guarded, unbounded component does not

provide garbage collection, then it is an
unmanaged component. This is one of the third
set of Booch's forms.);

End Irule;

Irule Guarded Managed is
antecedent: (forml, guarded),

(form2, unbounded),
(garbagecollectionprovided, true);

consequent: (form3, managed);
iustification: lIf a gtuarded, unbounded component does

provide garbage collection, then it is a
managed component. This is one of the third
set of Booch's forms.);

End Irule;

Irule ConcurrentUnmanaged is
antecedent: (forml, concurrent),

(form2, unbounded),
(garbagecollectionprovided, false);

consequent: (foria3, unmanaged);
justification: {If a concurrent, unbounded component does not

provide garbage collection, then it is an
ur-managed componen-. This is one of the third
set of Booch's forms.);

End Irule;

Irule ConcurrentManaged is
antecedent: (fornil, concurrent),

(fornL2, unbounded),
(garbagecollection provided, true);

consequent: (form3, managed);
"justification: (If a concurrent, unbounded component does

provide garbage collection, then it is a
managed component. This is one of the third
set of Pooch's forms.);

End Irule;

Irule Multiple Unmanaged is
antecedent: (fomnl, multiple),

(form2, unbounded),
(garbage collection~provided, false);

consequent: (form3, unmanaged);

ReusablUty Library Framework AdaTAU 08 June 1990

I!

AdaTAU User's Manual B-9

justification: (If a multiple, unbounded component does not
provide garbage collection, then it is an
unmanaged component. This is one of the third
set of Booch's forms.);

End Irule;

Irule Multiple Managed is
antecedent: (forml, multiple),

(form2, unbounded),
(garbagecollection_provided, true)!

consequent: (form3, managed);
justification: 1If a multiple, unbounded component does

provide garbage collection, then it is a
managed component. This is one of the third
set of Booch's formni.);

End Irule;

Irule Form4_Iterator is
antecedent: (iterator yrovided, true);
consequent: (formt4, iterator);
justification: (If the component provides an iterator for its

objects, then it is an iterator component. This
is one of the fourth set of Booch's forms.);

End Irule;

Irule Form4_Noniterator is
antecedent: (iterator_provided, false);
consequent: (form4, noniterator);
justification: (If the component does not provide an iterator

for its objects, then it is a noniterator
component. This is one of the fourth set of
Booch's forms;

End Irule;

End Booch Irules;

inferencer Boochtaxonomy is
irule base : booch irules;
qrule base : boochqrules;

end Booch taxonomy;

Reusablilty Library Framework AdaTAU 08 June 1990

References

[Barr81] A. Barr and E. A. Feigenbaum, The Handbook of Artificial Intelligence,
Volume 1, William Kaufmann, Inc., 1981.

[Booch87] G. Booch, Software Components with Ada, Benjamin/Cunmnings Publishing
Company Inc, Menlo Park, California, 1987.

[LRM83] Reference Manual for the Ada Programming Language, United States
Department of Defense, February 1983. (American National Standards
Institute/MIL-STD- 1815A-1983).

[McDowel189] R. McDowell and K. Cassell, "The RLF Librarian: A Reusability Librarian
Based on Cooperating Knowledge-Based Systems," Proceedings of RADC 4th
Annual Knowledge-Based Software Assistant Conference, Utica, NY,
Septem.•ber 1989.

[Simos88] M. Simos, "The Growing of an Organon: A Hybrid Knowledge-Based
Technology and Methodology for Software Reuse," Proceedings of 1988
National institute for Software Quality and Productivity (NISQP) Conference
on Software Reusability, April 1988, pp. E-1 through E-25.

[Solderitsch89] J. Soldertsch, K. Wallnau, and J. Thaihamer, "Constructing Domain-Specific
Ada Reuse Libraries," Proceedings of Seventh Annual National Conference
on Ada Technology. March 1989.

[Wallnau88] K. Wallnau, J. Solderitsch, M. Simos, R. McDowell. K. Cassell, and D.
Campbell. "Construction of Knowledge-Based Components and Applications
in Ada," Proceedings of AIDA-88, Fourth Annual Conference on Artificial
Intelligence & Ada, November 1988, pp. 3-1 through 3-21.

I

